1
|
Zhao N, Zhao S, Duan J, Qin W, Li Y. Effects of epigallocatechin gallate on microbial communities of rainbow trout fillets during ice storage and identification of biogenic amines-producing bacteria. Food Sci Biotechnol 2025; 34:1413-1421. [PMID: 40110413 PMCID: PMC11914556 DOI: 10.1007/s10068-024-01763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 03/22/2025] Open
Abstract
Biogenic amines-producing bacteria were isolated from rainbow trout fillets and their biogenic amines production ability was investigated. The effects of epigallocatechin gallate (EGCG) on the microbial communities of rainbow trout fillets were also investigated. Fifteen (15) strains of biogenic amines-producing bacteria were isolated from rainbow trout fillets. Pseudomonas psychrophila and Shewanella baltica produced putrescine (73.97 mg/mL) and histamine (48.66 mg/mL), respectively. The high-throughput sequencing results indicated Proteobacteria were the dominant phyla of the both control group and the EGCG treated groups. At the genus level, Shewanella spp. and Pseudomonas spp. were the dominating bacteria in the control group, while Pseudomonas spp. were the dominant bacteria in the EGCG treated groups. EGCG can obviously decrease bacterial diversity of rainbow trout fillets, which was mainly reflected in the relative abundance of Shewanella spp. This study provides microbial insights into controlling the quality of rainbow trout fillets during ice storage.
Collapse
Affiliation(s)
- Nan Zhao
- National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Technology, Bohai University, Jinzhou, 121013 Liaoning China
| | - Songmin Zhao
- National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Technology, Bohai University, Jinzhou, 121013 Liaoning China
| | - Jinrui Duan
- National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Technology, Bohai University, Jinzhou, 121013 Liaoning China
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7E 5E1 Canada
| | - Yingchang Li
- National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Technology, Bohai University, Jinzhou, 121013 Liaoning China
| |
Collapse
|
2
|
Jia J, Duan J, Bao S, Zhang X, Jia X, Ye J, Liu Y, Liu X, Duan X. Metabolomic and proteomic profiling reveals the formation mechanism of volatile flavor in egg whites during fermentation by Streptococcus thermophilus. Food Chem 2025; 466:142219. [PMID: 39612849 DOI: 10.1016/j.foodchem.2024.142219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/13/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
In this study, the flavor of egg whites was significantly improved by lactic acid fermentation, and the metabolic networks of metabolites, volatile compounds, and enzymes were established using gas chromatography-mass spectrometry, metabolomic, and proteomic. Results indicate that among ten types of common lactic acid bacteria, Streptococcus thermophilus endowed egg white with the most pleasant flavor through increasing aldehydes, ketones, alcohols, esters, terpenoids, and aromatic compounds. Amino acid catabolism was the predominant pathway for generating most aldehydes, alcohols, acids, and esters. The changes in the organic acids and derivatives (mainly amino acids, peptides, and analogues) concentration during fermentation are attributed to the hydrolysis of egg white proteins by proteinases and peptidases, and the regulation of enzymes involved in amino acid biosynthesis and other reactions. This study provides a valuable reference for future investigations focusing on regulating the flavor release of egg whites.
Collapse
Affiliation(s)
- Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Jiayi Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Shihan Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xixi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xin Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Jianzhi Ye
- Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, PR China.
| | - Yuanjing Liu
- Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, PR China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
3
|
Fan H, Jiang J, Dong H, Hu J, Chen W, Pan Y, Zhao Y, Liu H. Specific surface area changes and functional potential exploration of Pleurotus pulmonarius under ultrasonic frequency control. Food Chem X 2025; 26:102268. [PMID: 40027109 PMCID: PMC11869841 DOI: 10.1016/j.fochx.2025.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
This article explores the changes in the specific surface area of Pleurotus pulmonarius under the control of different ultrasonic frequencies, analyzes the changes in flavor substances of P. pulmonarius and explores its functional nutritional potential. The results show that within a certain range, the specific surface area and pore size increase with the increase of ultrasonic waves, which has a significant effect on the release of flavor substances of P. pulmonarius and also affects its ability to adsorb and release substances. Therefore, controlling the specific surface area and pore structure of P. pulmonarius by ultrasonic frequency can make P. pulmonarius more effectively absorb nutrients in the surrounding environment and improve its nutritional value and availability.
Collapse
Affiliation(s)
- Hangyu Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jinlin Jiang
- Changsha Customs Technology Center, Changsha 410007, China
| | - Huaihai Dong
- Shanghai Dashanhe Edible Fungi Technology Co.,Ltd, Shanghai 201403, China
| | - Jinqing Hu
- Changdao District Bureau of Natural Resources, Yantai 265800, China
| | - Wenjun Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Kurek M, Pišonić P, Ščetar M, Janči T, Čanak I, Vidaček Filipec S, Benbettaieb N, Debeaufort F, Galić K. Edible Coatings for Fish Preservation: Literature Data on Storage Temperature, Product Requirements, Antioxidant Activity, and Coating Performance-A Review. Antioxidants (Basel) 2024; 13:1417. [PMID: 39594558 PMCID: PMC11591116 DOI: 10.3390/antiox13111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Fresh fish is among the most nutritive foodstuffs, but it is also the most perishable one. Therefore, huge efforts have been made to find the most suitable tools to deliver fish of the highest quality to exigent consumers. Scientific studies help the industry to exploit the newest findings to scale up emerging industrial technologies. In this review article, the focus is on the latest scientific findings on edible films used for fish coatings and storage. Since today's packaging processing and economy are governed by sustainability, naturality underpins packaging science. The synthesis of edible coatings, their components, processing advantages, and disadvantages are outlined with respect to the preservation requirements for sensitive fish. The requirements of coating properties are underlined for specific scenarios distinguishing cold and freezing conditions. This review raises the importance of antioxidants and their role in fish storage and preservation. A summary of their impact on physical, chemical, microbiological, and sensory alterations upon application in real fish is given. Studies on their influence on product stability, including pro-oxidant activity and the prevention of the autolysis of fish muscle, are given. Examples of lipid oxidation and its inhibition by the antioxidants embedded in edible coatings are given together with the relationship to the development of off-odors and other unwanted impacts. This review selects the most significant and valuable work performed in the past decade in the field of edible coatings whose development is on the global rise and adheres to food waste and sustainable development goals 2 (zero hunger), 3 (good health and well-being), and 12 (responsible consumption and production).
Collapse
Affiliation(s)
- Mia Kurek
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Petra Pišonić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Mario Ščetar
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Tibor Janči
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Iva Čanak
- Laboratory for General Microbiology and Food Microbiology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Sanja Vidaček Filipec
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Nasreddine Benbettaieb
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Frédéric Debeaufort
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Kata Galić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| |
Collapse
|
5
|
Liu Y, Tan Z, Huang Y, Liu J, Xu X, Zhu B, Dong X. pH-shift strategy improving the thermal stability and oxidation stability of rice starch/casein-based high internal phase emulsions for the application in fish cake. Food Chem X 2023; 18:100694. [PMID: 37187487 PMCID: PMC10176162 DOI: 10.1016/j.fochx.2023.100694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
The thermal stability of the different pH-shift rice starch/casein-based high internal phase emulsions (SC-HIPE) were evaluated in the present study to verify potential in improving the quality of fish cake. The results showed that the pH-shift treatment improved thermal stability (from 27.23% to 76.33%) and oxidation time (from 5.01 h to 6.86 h) of SC-HIPE, which showed the smaller droplet size (decreased from 15.14 to 1.64 μm) and higher storage module. The breaking force of FC with thermal stable SC-HIPE (average 64.95 g) was higher than that with thermal unstable SC-HIPE (51.05 g). The cohesiveness, adhesiveness and chewiness could be improved by adding thermal stable SC-HIPE, compared with pork fat. Additionally, combining sensory evaluation, the thermal stable SC-HIPE improved the gel quality, thus it could be completely replaced pork fat in the preparation of FC, which provided theoretical guidance for the preparation and application of fat substitutes.
Collapse
Affiliation(s)
- Yu Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Zhifeng Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Yizhen Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Jiaqi Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Xianbing Xu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Beiwei Zhu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
- Corresponding authors at: School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
- Corresponding authors at: School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
6
|
The impact of marine and terrestrial based extracts on the freshness quality of modified atmosphere packed sea bass fillets. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
7
|
Shao F, Ma X, Wei P, Cao J, He Y, Feng A, Dong X, Zhou D, Li C. The effects of polyphenols on fresh quality and the mechanism of partial freezing of tilapia fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6014-6023. [PMID: 35460082 DOI: 10.1002/jsfa.11954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fish is one of the most popular foods for consumers because of its abundant nutrition, tenderness and delicious taste. With increasing demand for tilapia fillets, practical preservation is widely used to maintain quality and safety during long-distance transportation and storage. Thus the effects of polyphenols (2 g L-1 ) on color, flavor quality and mechanism of tilapia fillets were studied during 49 days of partial freezing (-4 °C). RESULTS Treatment with carnosic acid (CA), procyanidin (PA), quercetin (QE) and resveratrol (RSV) inhibited water migration, myoglobin oxidation and psychrophilic bacteria stability during partial freezing storage. Aeromonas and Acinetobacter were the dominant bacteria of tilapia fillets during -4 °C storage. The relative abundance of aromatic substances (T70/2) in the polyphenol groups (>20%) was richer than in the control (CON) group (17%). Partial least squares discriminant analysis results showed that the different odors of the control and polyphenol groups were completely separated. Moreover, 35 fatty acids were identified by gas chromatographic analysis. On 49 days, the ratios of unsaturated fatty acids in the PA group (58.64%), QE group (57.70%) and RSV group (57.25%) were higher than in the control group (57.19%), and the PA group was the highest. CONCLUSION Polyphenol treatment effectively maintained freshness and improved the quality of tilapia fillets during partial freezing. The polyphenol treatment comprehensively sustained the color and flavor quality of tilapia fillets found in the proposed mechanism. In particular, PA treatment was considered a potential method for preserving the freshness of fillets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fanghui Shao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiaoye Ma
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Peiyu Wei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yanfu He
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Aiguo Feng
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiuping Dong
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
8
|
Chakraborty P, Nath D, Hoque M, Sarkar P, Hati S, Mishra BK. Biopolymer‐based antimicrobial coatings for aquatic food products: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Priyanka Chakraborty
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| | - Debarshi Nath
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Monjurul Hoque
- Teagasc Ashtown Food Research Centre Teagasc Ashtown Dublin 15 Ireland
- School of Food and Nutritional Sciences University College Cork T12 R229 Cork Ireland
| | - Preetam Sarkar
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Subrota Hati
- Department of Dairy Microbiology SMC College of Dairy Science Anand Agricultural University India
| | - Birendra Kumar Mishra
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| |
Collapse
|
9
|
Pei J, Mei J, Yu H, Qiu W, Xie J. Effect of Gum Tragacanth-Sodium Alginate Active Coatings Incorporated With Epigallocatechin Gallate and Lysozyme on the Quality of Large Yellow Croaker at Superchilling Condition. Front Nutr 2022; 8:812741. [PMID: 35118111 PMCID: PMC8804529 DOI: 10.3389/fnut.2021.812741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 01/05/2023] Open
Abstract
This research was done to investigate the synergistic interactions of the gum tragacanth (GT)–sodium alginate (SA) active coatings, incorporated with epigallocatechin gallate and lysozyme, on the quality of large yellow croaker (Larimichthys crocea) during superchilling storage at −3°C. Results showed that the GT-SA active coatings, containing epigallocatechin gallate [EGCG (E), 0.32% w/v], and lysozyme [LYS (L), 0.32% w/v] have reduced the total viable count, psychrophilic bacteria, and Pseudomonas spp. by about 1.55 log CFU/g, 0.49 log CFU/g, and 1.64 log CFU/g compared to the control at day 35. The GT-SA active coatings containing EGCG and LYS were effective in lowering the formations of off-odor compounds such as total volatile basic nitrogen (TVB-N), malondialdehyde (MDA), and off-favor amino acid (histidine). The solid phase microextraction gas chromatography-mass spectrometer (SPME-GC/MS) was applied to characterize and to quantify the volatile compounds of large yellow croaker samples during superchilling storage, while the relative content of the fishy flavor compounds (including 1-octen-3-ol and acetoin) was significantly reduced in the active coatings treated samples. Furthermore, the GT-SA active coatings containing EGCG and LYS treatments was found to be more effective in retarding the migration of water based on magnetic resonance imaging (MRI) results and in maintaining the organoleptic quality of large yellow croaker in superchilling storage at −3°C according to the sensory evaluation results. The results showed that the GT-SA active coating containing EGCG and LYS was effective to be used as a fish preservative to improve the quality and to prolong the shelf life of large yellow croaker in a superchilling storage for at least 7 days.
Collapse
Affiliation(s)
- Juxin Pei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- *Correspondence: Jun Mei
| | - Huijie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- Jing Xie
| |
Collapse
|
10
|
Li B, Wang X, Gao X, Ma X, Zhang L, Mei J, Xie J. Shelf-Life Extension of Large Yellow Croaker ( Larimichthys crocea) Using Active Coatings Containing Lemon Verbena ( Lippa citriodora Kunth.) Essential Oil. Front Nutr 2021; 8:678643. [PMID: 34355009 PMCID: PMC8329554 DOI: 10.3389/fnut.2021.678643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Active coating could improve the fish quality and extend the shelf life. This study investigates the effect of locust bean gum (LBG) and sodium alginate (SA) active coatings containing lemon verbena (Lippa citriodora Kunth.) essential oil (LVEO) emulsions on microbiological, physicochemical and organoleptic evaluation of large yellow croaker (Larimichthys crocea) samples during refrigerated storage at 4°C. Results showed that LBG-SA coatings incorporated with 0.30 or 0.60% LVEO emulsions significantly inhibited the growth of mesophile bacteria, Pseudomonas spp., H2S-producing bacteria, lactic acid bacteria (LAB) and psychrophilic bacteria, and reduce the productions of trimethylamine (TMA), total volatile basic nitrogen (TVB-N) and ATP-related compounds. Further, the LVEO treatments also retarded the water migration and maintained the organoleptic evaluation results of large yellow croaker during storage at 4°C. In conclusion, the LBG-SA active coatings incorporated with LVEO emulsions maintained the quality and extended the shelf life of large yellow croaker during refrigerated storage.
Collapse
Affiliation(s)
- Bo Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.,School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, China
| | - Xuesong Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Xin Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.,School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, China
| | - Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Leilei Zhang
- Shanghai Guo Qi Testing Services Technology Co., Ltd., Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
11
|
Liu W, Wang Q, Mei J, Xie J. Shelf-Life Extension of Refrigerated Turbot ( Scophthalmus maximus) by Using Weakly Acidic Electrolyzed Water and Active Coatings Containing Daphnetin Emulsions. Front Nutr 2021; 8:696212. [PMID: 34336910 PMCID: PMC8319538 DOI: 10.3389/fnut.2021.696212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/16/2021] [Indexed: 02/01/2023] Open
Abstract
This research was to investigate the effect of weakly acidic electrolytic water (WAEW) treatments combining with the locust bean gum (LBG) and sodium alginate (SA) active coatings, containing daphnetin emulsions on microbiological, physicochemical, and sensory changes of turbot (Scophthalmus maximus) during refrigerated storage at 4°C for 24 days. Results showed that WAEW, together with LBG-SA coatings containing daphnetin emulsions treatments, could significantly lower the total viable count (TVC), H2S-producing bacteria, pseudomonas spp., and psychrotrophic bacteria counts, and inhibit the productions of off-flavor compounds, including the total volatile basic nitrogen (TVB-N), inosine (HxR), and hypoxanthine (Hx). Furthermore, the treatments also prevented textural deterioration, delayed water migration, and had higher organoleptic evaluation results. Therefore, WAEW, together with LBG-SA coatings, containing daphnetin emulsions treatments, had the potential to improve the quality of turbot during refrigerated storage.
Collapse
Affiliation(s)
- Wenru Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Qi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
Zhang B, Pérez‐Won M, Tabilo‐Munizaga G, Aubourg SP. Inhibition of lipid damage in refrigerated salmon (
Oncorhynchus kisutch
) by a combined treatment of CO
2
packaging and high‐pressure processing. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Mario Pérez‐Won
- Department of Food Engineering University of Bío‐Bío Chillán Chile
| | | | - Santiago P. Aubourg
- Department of Food Technology Marine Research Institute (CSIC) c/ E. Cabello, 6 Vigo 36208 Spain
| |
Collapse
|
13
|
Wang X, Xie J. Quality attributes of horse mackerel (Trachurus japonicus) during frozen storage as affected by double-glazing combined with theaflavins. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1919702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- XueSong Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research, Center of Aquatic Product Processing & Preservation, Shanghai, China
- National Experimental Teaching Demonstration, Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
- Shanghai Professional Technology, Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
14
|
Zhao X, Chen L, Wongmaneepratip W, He Y, Zhao L, Yang H. Effect of vacuum impregnated fish gelatin and grape seed extract on moisture state, microbiota composition, and quality of chilled seabass fillets. Food Chem 2021; 354:129581. [PMID: 33756319 DOI: 10.1016/j.foodchem.2021.129581] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/07/2021] [Accepted: 03/06/2021] [Indexed: 12/28/2022]
Abstract
The effect of fish gelatin (FG) and grape seed extract (GSE) on microbiota composition and moisture state of fish was unexplored. Herein, this study aimed to evaluate the single and combined (FGG) effects on seabass during storage (4 °C) with assistant of vacuum impregnation and to elucidate the underlying preservative mechanism. As suggested by low-field NMR and magnetic resonance imaging, FGG-treated seabass presented higher water holding capacity by controlling transformation from immobilised to free water. Moreover, the total viable count and spoilage bacteria were reduced by > 1 log CFU/g as compared to the control. Changes in microbial flora analysed using high throughput sequencing further indicated that GSE contributed to the notably suppressed growth of Pseudomonas. Also, the accumulation of biogenic amines especially putrescine was decreased (over 0.5-fold) under the combination treatment as compared to the control (P < 0.05). The results suggest that FGG is promising for seabass preservation.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Lin Chen
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Wanwisa Wongmaneepratip
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Yun He
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Lin Zhao
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
15
|
Elucidating Antibacterial Activity and Mechanism of Daphnetin against Pseudomonas fluorescens and Shewanella putrefaciens. J FOOD QUALITY 2020. [DOI: 10.1155/2020/6622355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this research, the antibacterial activity and mechanism of daphnetin against Pseudomonas fluorescens and Shewanella putrefaciens were evaluated. The minimum inhibitory concentration (MIC) of daphnetin on P. fluorescens and S. putrefaciens was 0.16 and 0.08 mg·mL−1, respectively. The growth curve test also showed that daphnetin had a good antibacterial effect. The results of intracellular component leakage and cell viability analysis illustrated that daphnetin destroyed the morphology of the cell membrane. According to scanning electron microscope and transmission electron microscope observations, the treated bacterial cells displayed obvious morphological and ultrastructural changes in the cell membrane of the two tested strains, whichconfirmed daphnetin’s damage to the integrity of the cell membrane. The findings indicated that daphnetin mainly exerted its antibacterial effect by destroying the membrane and suggested that it had good potential to be as a natural food preservative.
Collapse
|
16
|
Hassoun A, Carpena M, Prieto MA, Simal-Gandara J, Özogul F, Özogul Y, Çoban ÖE, Guðjónsdóttir M, Barba FJ, Marti-Quijal FJ, Jambrak AR, Maltar-Strmečki N, Kljusurić JG, Regenstein JM. Use of Spectroscopic Techniques to Monitor Changes in Food Quality during Application of Natural Preservatives: A Review. Antioxidants (Basel) 2020; 9:E882. [PMID: 32957633 PMCID: PMC7555908 DOI: 10.3390/antiox9090882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Consumer demand for food of high quality has driven research for alternative methods of food preservation on the one hand, and the development of new and rapid quality assessment techniques on the other hand. Recently, there has been a growing need and interest in healthier food products, which has led to an increased interest in natural preservatives, such as essential oils, plant extracts, and edible films and coatings. Several studies have shown the potential of using biopreservation, natural antimicrobials, and antioxidant agents in place of other processing and preservation techniques (e.g., thermal and non-thermal treatments, freezing, or synthetic chemicals). Changes in food quality induced by the application of natural preservatives have been commonly evaluated using a range of traditional methods, including microbiology, sensory, and physicochemical measurements. Several spectroscopic techniques have been proposed as promising alternatives to the traditional time-consuming and destructive methods. This review will provide an overview of recent studies and highlight the potential of spectroscopic techniques to evaluate quality changes in food products following the application of natural preservatives.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, 9291 Tromsø, Norway
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | - Yeşim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | | | - María Guðjónsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, 113 Reykjavík, Iceland;
- Matis, Food and Biotech R&D, 113 Reykjavík, Iceland
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Francisco J. Marti-Quijal
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Nadica Maltar-Strmečki
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička c. 54, 10 000 Zagreb, Croatia;
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| |
Collapse
|
17
|
High-CO 2 Modified Atmosphere Packaging with Superchilling (-1.3 °C) Inhibit Biochemical and Flavor Changes in Turbot ( Scophthalmus maximus) during Storage. Molecules 2020; 25:molecules25122826. [PMID: 32575384 PMCID: PMC7356536 DOI: 10.3390/molecules25122826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The effects of modified atmosphere packaging (MAP) in combination with superchilling (−1.3 °C) on the physicochemical properties, flavor retention, and organoleptic evaluation of turbot samples were investigated during 27 days storage. Results showed that high-CO2 packaging (70% or 60% CO2) combined with superchilling could reduce the productions of off-flavor compounds, including total volatile basic nitrogen (TVB-N) and ATP-related compounds. Twenty-four volatile organic compounds were determined by gas chromatography–mass spectrometry (GC/MS) during storage, including eight alcohols, 11 aldehydes, and five ketones. The relative content of off-odor volatiles, such as 1-octen-3-ol, 1-penten-3-ol, (E)-2-octenal, octanal, and 2,3-octanedione, was also reduced by high-CO2 packaging during superchilling storage. Further, 60% CO2/10% O2/30% N2 with superchilling (−1.3 °C) could retard the water migration on the basis of the water holding capacity, low field NMR, and MRI results, and maintain the quality of turbot according to organoleptic evaluation results during storage
Collapse
|