1
|
Adaikalapandi S, Thangadurai TD, Sivakumar S, Nataraj D, Schechter A, Kalarikkal N, Thomas S. Aggregation induced emission "Turn on" ultra-low detection of anti-inflammatory drug flufenamic acid in human urine samples by carbon dots derived from bamboo stem waste. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125278. [PMID: 39423556 DOI: 10.1016/j.saa.2024.125278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Carbon dot-based fluorescence sensors have attracted research interest for the selective determination of anti-inflammatory drugs in biological fluids and environments. The overdose and accumulation of anti-inflammatory drugs in tissues can cause chronic side effects including abdominal pain, and renal damage. Herein, we report a new fluorescent probe, bamboo stem waste-derived carbon dots (BS-CDs) for highly sensitive detection of Flufenamic acid (FA), a hazardous anti-inflammatory drug. The UV-vis absorption spectra of BS-CDs show a redshifted absorption peak at 283 nm upon the addition of FA suggesting strong binding interaction between BS-CDs and FA molecule. The BS-CDs showed a fluorescence enhancement (∼2-fold) detection for FA (400 μM) in the linear concentration range (0.40 → 0.65 μM) with a limit of detection (LoD; 17 nM) and binding constant (Ka = 1.33 × 10-3 M-1). The time-resolved fluorescence decay analysis showed that the average lifetime of BS-CDs has slightly changed (4.42 → 4.67 ns) by the interaction with FA through the aggregation-induced emission (AIE) process. The interference, pH, and effect of time results suggest that BS-CDs are highly selective probes for FA detection and do not show any interference involvement during FA detection. The confirmation of the structure and morphology changes of BS-CDs after interaction with FA was carried out by XRD, FESEM, HRTEM, FTIR, and Raman spectroscopy. The practicability of the BS-CDs probe was proved by the detection of FA in human urine samples with recovery of 103-109 %. This suggests that the proposed BS-CDs-based 'turn-on' sensor could be used to determine the FA in biological fluids.
Collapse
Affiliation(s)
- Subitha Adaikalapandi
- Department of Chemistry, and Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Coimbatore, 641407, Tamil Nadu, India
| | - T Daniel Thangadurai
- Department of Chemistry, and Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Coimbatore, 641407, Tamil Nadu, India.
| | - S Sivakumar
- Department of Chemistry, and Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Coimbatore, 641407, Tamil Nadu, India
| | - D Nataraj
- Department of Physics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Alex Schechter
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560, Kerala, India
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India
| |
Collapse
|
2
|
Kokulnathan T, Wang TJ, Kumar EA, Liu ZY. Zinc Manganate: Synthesis, Characterization, and Electrochemical Application toward Flufenamic Acid Detection. Inorg Chem 2021; 60:4723-4732. [DOI: 10.1021/acs.inorgchem.0c03672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Elumalai Ashok Kumar
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Zhe-Yuan Liu
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
3
|
Sato-Numata K, Numata T, Ueta Y, Okada Y. Expression and functions of N-type Cav2.2 and T-type Cav3.1 channels in rat vasopressin neurons under normotonic conditions. J Physiol Sci 2020; 70:49. [PMID: 33059597 PMCID: PMC10717235 DOI: 10.1186/s12576-020-00775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022]
Abstract
Arginine vasopressin (AVP) neurons play essential roles in sensing the change in systemic osmolarity and regulating AVP release from their neuronal terminals to maintain the plasma osmolarity. AVP exocytosis depends on the Ca2+ entry via voltage-gated Ca2+ channels (VGCCs) in AVP neurons. In this study, suppression by siRNA-mediated knockdown and pharmacological sensitivity of VGCC currents evidenced molecular and functional expression of N-type Cav2.2 and T-type Cav3.1 in AVP neurons under normotonic conditions. Also, both the Cav2.2 and Cav3.1 currents were found to be sensitive to flufenamic acid (FFA). TTX-insensitive spontaneous action potentials were suppressed by FFA and T-type VGCC blocker Ni2+. However, Cav2.2-selective ω-conotoxin GVIA failed to suppress the firing activity. Taken together, it is concluded that Cav2.2 and Cav3.1 are molecularly and functionally expressed and both are sensitive to FFA in unstimulated rat AVP neurons. Also, it is suggested that Cav3.1 is primarily involved in their action potential generation.
Collapse
Affiliation(s)
- Kaori Sato-Numata
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
- Department of Physiology, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Yasunobu Okada
- National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
4
|
Gacki M, Kafarska K, Pietrzak A, Szczesio M, Korona-Głowniak I, Wolf WM. Transition Metal Complexes with Flufenamic Acid for Pharmaceutical Applications-A Novel Three-Centered Coordination Polymer of Mn(II) Flufenamate. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13173705. [PMID: 32825746 PMCID: PMC7503579 DOI: 10.3390/ma13173705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Five complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with non-steroidal anti-inflammatory drug, flufenamic acid were synthesized: (1) [Mn3(fluf)6EtOH)(H2O)]·3EtOH; (2) [Co(fluf)2(EtOH)(H2O)]·H2O; (3) [Ni(fluf)2(EtOH)(H2O)]·H2O; (4) [Cu(fluf)2·H2O]; (5) [Zn(fluf)2·H2O]. All complexes were characterized by elemental analysis (EA), flame atomic absorption spectrometry (FAAS), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The crystal structure of 1 was determined by the single crystal X-ray diffraction technique. It crystallizes in the triclinic space group P with three independent Mn(II) cations, six coordinated flufenamato ligands augmented with water and ethanol molecules in the inner coordination sphere. In this crystal, manganese atoms are multiplied by symmetry and form infinite, polymeric chains which extend along the [001] dimension. The Hirshfeld Surface analysis revealed changes in interaction assemblies around all metal centers. The antioxidant and antimicrobial activities were established for all complexes and free ligand for comparison. All compounds exhibit good or moderate bioactivity against Gram-positive bacteria and yeasts.
Collapse
Affiliation(s)
- Michał Gacki
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90–924 Lodz, Poland; (K.K.); (A.P.); (M.S.); (W.M.W.)
| | - Karolina Kafarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90–924 Lodz, Poland; (K.K.); (A.P.); (M.S.); (W.M.W.)
| | - Anna Pietrzak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90–924 Lodz, Poland; (K.K.); (A.P.); (M.S.); (W.M.W.)
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90–924 Lodz, Poland; (K.K.); (A.P.); (M.S.); (W.M.W.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1, 20–093 Lublin, Poland;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90–924 Lodz, Poland; (K.K.); (A.P.); (M.S.); (W.M.W.)
| |
Collapse
|