1
|
Bunnemann L, Wulkesch C, Voigt VC, Czekelius C. Synthesis of Perfluoroalkylated Pyrazoles from α-Perfluoroalkenylated Aldehydes. Molecules 2024; 29:5034. [PMID: 39519675 PMCID: PMC11547949 DOI: 10.3390/molecules29215034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Within this study, we report a simple two-step process for the synthesis of perfluoroalkylated pyrazoles from aliphatic aldehydes. In the photocatalytic first step, the aldehydes are transformed into the corresponding perfluoroalkylated enals, which then undergo nucleophilic attack by hydrazine and subsequent ring closure, providing the fluorinated 3,4-substituted pyrazole products in a 64-84% yield. Using triphenylphosphine and imidazolidinone as organocatalysts, the method is operationally simple and omits heavy metal-containing waste.
Collapse
Affiliation(s)
| | | | | | - Constantin Czekelius
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany (C.W.)
| |
Collapse
|
2
|
Yan T, Yang J, Yan K, Wang Z, Li B, Wen J. A General Photoactive H-Bonding EDA Complex Model Drives the Selective Hydrothiolation and Hydroxysulfenylation of Carbonyl Activated Alkenes. Angew Chem Int Ed Engl 2024; 63:e202405186. [PMID: 38953457 DOI: 10.1002/anie.202405186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Excitation of photoactive electron donor-acceptor (EDA) complexes to generate radical is a promising approach in radical chemistry. In this study, we introduce a new model of H-bonding EDA complexes for the selective hydrothiolation and hydroxysulfenylation of carbonyl-activated alkenes with diverse thiols under visible light conditions. The reliability of this H-bonding EDA complex model has been confirmed by meticulous experimental and theoretical calculations. Mechanistic investigations have revealed the significant influence of the solvent in determining whether the excitation of photoactive H-bonding EDA complex leads to charge transfer (CT) or energy-charge transfer (En-CT), thereby controlling Markovnikov and anti-Markovnikov selectivity. Notably, the Quantum Theory of Atoms in Molecules (QTAIM) analysis clearly shows that the excited state of the C=O-H-S EDA complex involves closed-shell partially covalent interactions.
Collapse
Affiliation(s)
- Tingtao Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Jianjing Yang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Kelu Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| |
Collapse
|
3
|
Liu C, Huo Y, Bu J, Yuan Z, Liang K, Xia C. Visible Light-Induced Oxy-perfluoroalkylation of Olefins via Ternary Electron Donor-Acceptor Complexes. J Org Chem 2024; 89:10805-10815. [PMID: 39008713 DOI: 10.1021/acs.joc.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Perfluoroalkyl iodides generally formed electron donor-acceptor (EDA) complexes by halogen bonding with a nitrogen atom containing Lewis bases. Since the electronegativity of the oxygen atom is stronger than that of the nitrogen atom, the resulting Rf-I···O-type halogen bonding EDA complex is less inclined to undergo electron transfer. Here, we reported rare ternary EDA complexes among perfluoroalkyl iodide, oxygen atom, and base. Mechanism experiments and density functional theory theoretical (DFT) calculations indicated that a base-promoted proton-coupled electron transfer (PCET) process was involved in this photochemical reaction. The intracomplex electron transfer event generated two radical species, perfluoroalkyl radical and TEMPO radical, enabling the subsequent oxy-perfluoroalkylation of olefins.
Collapse
Affiliation(s)
- Chuanwang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Yanman Huo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Jiawei Bu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Zhaoran Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| |
Collapse
|
4
|
Dong B, Zhao F, Lv WX, Liu YG, Wei D, Wu J, Chi YR. Regio- and stereoselective access to highly substituted vinylphosphine oxides via metal-free electrophilic phosphonoiodination of alkynes. Nat Commun 2024; 15:5385. [PMID: 38918418 PMCID: PMC11199708 DOI: 10.1038/s41467-024-49640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
In general, the P-centered ring-opening of quaternary phosphirenium salts (QPrS) predominantly leads to hydrophosphorylated products, while the C-centered ring-opening is primarily confined to intramolecular nucleophilic reactions, resulting in the formation of phosphorus-containing cyclization products instead of difunctionalized products generated through intermolecular nucleophilic processes. Here, through the promotion of ring-opening of three-member rings by iodine anions and the quenching of electronegative carbon atoms by iodine cations, we successfully synthesize β-functionalized vinylphosphine oxides by the P-addition of QPrS intermediates generated in situ. Multiple β-iodo-substituted vinylphosphine oxides can be obtained with exceptional regio- and stereo-selectivity by reacting secondary phosphine oxides with unactivated alkynes. In addition, a variety of β-functionalized vinylphosphine oxides converted from C-I bonds, especially the rapid construction of benzo[b]phospholes oxides, demonstrates the significance of this strategy.
Collapse
Affiliation(s)
- Bingbing Dong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Fengqian Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wen-Xin Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ying-Guo Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Junliang Wu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
5
|
Zhao Y, Li L, Zang J, Young DJ, Ren ZG, Li HY, Yu L, Bian GQ, Li HX. Modulating β-Keto-enamine-Based Covalent Organic Frameworks for Photocatalytic Atom-Transfer Radical Addition Reaction. Chemistry 2024; 30:e202400377. [PMID: 38403857 DOI: 10.1002/chem.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The atom-transfer radical addition (ATRA) reaction simultaneously forges carbon-carbon and carbon-halogen bonds. However, frequently-used photosensitizers such as precious transition metal complexes, or organic dyes have limitations in terms of their potential toxicity and recyclability. Three β-ketoenamine-linked covalent organic frameworks (COFs) from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamines with variable transient photocurrent and photocatalytic activity have been prepared. A COF bearing electron-deficient Cl atoms displayed the highest photocatalytic activity toward the ATRA reaction of polyhalogenated alkanes to give halogenated olefins under visible light at room temperature. This heterogeneous photocatalyst exhibited good functional group tolerance and could be recycled without significant loss of activity.
Collapse
Affiliation(s)
- Yuting Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiyuan Zang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - David J Young
- Glasgow College, UESTC, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hai-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guo-Qing Bian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
6
|
Jha DK, Acharya S, Sakkani N, Chapa S, Guerra A, Zhao JCG. Visible Light-Assisted Ring-Opening of Cyclic Ethers with Carboxylic Acids Mediated by Triphenylphosphine and N-Halosuccinimides. Org Lett 2024; 26:172-177. [PMID: 38165662 DOI: 10.1021/acs.orglett.3c03805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The ring-opening of cyclic ethers (epoxide, oxetane, THF, and THP) by carboxylic acids was achieved by using N-iodosuccinimide (NIS) or N-bromosuccinimide (NBS) and triphenylphosphine under blue light. The corresponding ω-haloalkyl carboxylates were obtained under mild reaction conditions. The reaction is believed to work through a halogen bond complex between NIS (or NBS) and triphenylphosphine, which, upon irradiation with blue light, produces the key phosphine radical cation intermediate that initiates the ring-opening reactions.
Collapse
Affiliation(s)
- Dhiraj K Jha
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Sandhya Acharya
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Nagaraju Sakkani
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Samantha Chapa
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Andrew Guerra
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - John C-G Zhao
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
7
|
Zuo H, Zhang C, Zhang Y, Niu D. Base-Promoted Glycosylation Allows Protecting Group-Free and Stereoselective O-Glycosylation of Carboxylic Acids. Angew Chem Int Ed Engl 2023; 62:e202309887. [PMID: 37590127 DOI: 10.1002/anie.202309887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Here we report a simple and general method to achieve fully unprotected, stereoselective glycosylation of carboxylic acids, employing bench-stable allyl glycosyl sulfones as donors. Running the glycosylation reaction under basic conditions was crucial for the efficiencies and selectivities. Both the donor activation stage and the glycosidic bond forming stage of the process are compatible with free hydroxyl groups, thereby allowing for the use of fully unprotected glycosyl donors. This transformation is stereoconvergent, occurs under mild and metal-free conditions at ambient temperature with visible light (455 nm) irradiation, and displays remarkable scope with respect to both reaction partners. Many natural products and commercial drugs, including an acid derived from the complex anticancer agent taxol, were efficiently glycosylated. Experimental studies provide insights into the origin of the stereochemical outcome.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Chen Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
8
|
Affiliation(s)
- Weidong Shang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Department of Chemical Engineering, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
9
|
Piedra HF, Valdés C, Plaza M. Shining light on halogen-bonding complexes: a catalyst-free activation mode of carbon-halogen bonds for the generation of carbon-centered radicals. Chem Sci 2023; 14:5545-5568. [PMID: 37265729 PMCID: PMC10231334 DOI: 10.1039/d3sc01724a] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
The discovery of new activation modes for the creation of carbon-centered radicals is a task of great interest in organic chemistry. Classical activation modes for the generation of highly reactive radical carbon-centered intermediates typically relied on thermal activation of radical initiators or irradiation with unsafe energetic UV light of adequate reaction precursors. In recent years, photoredox chemistry has emerged as a leading strategy towards the catalytic generation of C-centered radicals, which enabled their participation in novel synthetic organic transformations which is otherwise very challenging or even impossible to take place. As an alternative to these activation modes for the generation of C-centered radicals, the pursuit of greener, visible-light initiated reactions that do not necessitate a photoredox/metal catalyst has recently caught the attention of chemists. In this review, we covered recent transformations, which rely on photoactivation with low-energy light of a class of EDA complexes, known as halogen-bonding adducts, for the creation of C-centered radicals.
Collapse
Affiliation(s)
- Helena F Piedra
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| | - Manuel Plaza
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
10
|
Matsuo K, Yamaguchi E, Itoh A. Halogen-Bonding-Promoted Photoinduced C-X Borylation of Aryl Halide Using Phenol Derivatives. J Org Chem 2023; 88:6176-6181. [PMID: 37083371 DOI: 10.1021/acs.joc.3c00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
This study investigates the photoinduced C-X borylation reaction of aryl halides by forming a halogen-bonding (XB) complex using 2-naphthol as an XB acceptor. The method is chemoselective and broadly functional group tolerant and provides concise access to corresponding boronate esters. Mechanistic studies reveal that forming the XB complex between aryl halide and naphthol acts as an electron donor-acceptor complex to furnish aryl radicals through photoinduced electron transfer.
Collapse
Affiliation(s)
- Kazuki Matsuo
- Laboratory of Pharmaceuticals Synthetic, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceuticals Synthetic, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceuticals Synthetic, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
11
|
Zhao G, Lim S, Musaev DG, Ngai MY. Expanding Reaction Profile of Allyl Carboxylates via 1,2-Radical Migration (RaM): Visible-Light-Induced Phosphine-Catalyzed 1,3-Carbobromination of Allyl Carboxylates. J Am Chem Soc 2023; 145:10.1021/jacs.2c11867. [PMID: 37017987 PMCID: PMC11694480 DOI: 10.1021/jacs.2c11867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Allyl carboxylates are useful synthetic intermediates in a variety of organic transformations, including catalytic nucleophilic/electrophilic allylic substitution reactions and 1,2-difunctionalization reactions. However, the catalytic 1,3-difunctionalization of allyl carboxylates remains elusive. Herein, we report the first photoinduced, phosphine-catalyzed 1,3-carbobromination of allyl carboxylates, affording a range of valuable substituted isopropyl carboxylates (sIPC). The transformation has broad functional group tolerance, is amenable to the late-stage modification of complex molecules and gram-scale synthesis, and expands the reaction profiles of allyl carboxylates and phosphine catalysis. Preliminary experimental and computational studies suggest a non-chain-radical mechanism involving the formation of an electron donor-acceptor complex, 1,2-radical migration (RaM), and Br-atom transfer processes. We anticipate that the 1,2-RaM reactivity of allyl carboxylates and the phosphine-catalyzed radical reaction will both serve as a platform for the development of new transformations in organic synthesis.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Sanghyun Lim
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
- Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
12
|
Tang L, Lv G, Cheng R, Yang F, Zhou Q. Three-Component Perfluoroalkylvinylation of Alkenes Enabled by Dual DBU/Fe Catalysis. Chemistry 2023; 29:e202203332. [PMID: 36351885 DOI: 10.1002/chem.202203332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Herein, a simple and efficient strategy that involves dual 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/iron-catalyzed alkene perfluoroalkylvinylation by using perfluoroalkyl iodides and 2-aminonaphthalene-1,4-diones as coupling partners is demonstrated. In terms of the developed catalytic system, various styrenes and aliphatic alkenes are well-tolerated, leading to the accurate preparation of perfluoroalkyl-containing 2-aminonaphthalene-1,4-diones in excellent regioselectivity. Moreover, the protocol can be readily applied in late-stage modifications of natural products and pharmaceuticals. The title reactions are featured by easily accessible and inexpensive catalysts and substrates, broad substrate applicability, and mild reaction conditions. Mechanistic investigations reveal a tandem C-I cleavable alkylation and C-C vinylation enabled by cooperative DBU/iron catalysis.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China.,Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, 464000, P.R. China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| |
Collapse
|
13
|
Haque A, Alenezi KM, Moll HE, Khan MS, Wong WY. Synthesis of Mixed Arylalkyl Tertiary Phosphines via the Grignard Approach. Molecules 2022; 27:4253. [PMID: 35807497 PMCID: PMC9268331 DOI: 10.3390/molecules27134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Trialkyl and triaryl phosphines are important classes of ligands in the field of catalysis and materials research. The wide usability of these low-valent phosphines has led to the design and development of new synthesis routes for a variety of phosphines. In the present work, we report the synthesis and characterization of some mixed arylalkyl tertiary phosphines via the Grignard approach. A new asymmetric phosphine is characterized extensively by multi-spectroscopic techniques. IR and UV-Vis spectra of some selected compounds are also compared and discussed. Density functional theory (DFT)-calculated results support the formation of the new compounds.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia; (K.M.A.); (H.E.M.)
| | - Khalaf M. Alenezi
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia; (K.M.A.); (H.E.M.)
| | - Hani El Moll
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia; (K.M.A.); (H.E.M.)
| | - Muhammad S. Khan
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Oman
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
14
|
Zhang C, Zuo H, Lee GY, Zou Y, Dang QD, Houk KN, Niu D. Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat Chem 2022; 14:686-694. [DOI: 10.1038/s41557-022-00918-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
|
15
|
Tang S, Liu T, Liu J, He J, Hong Y, Zhou H, Liu YL. Recent Advances in Photoinduced Perfluoroalkylation Using Perfluoroalkyl Halides as the Radical Precursors. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractPerfluoroalkylation is one of the most important methods for the introduction of multiple fluorine atoms into organic molecules in a single step. The use of photoinduced technology is a common strategy that uses the outstanding oxidation or reduction ability of a photoredox catalyst in its excited state to generate perfluoroalkyl radicals from perfluoroalkyl halides. The perfluoroalkyl radicals thus obtained can undergo various subsequent reactions under mild conditions, such as ATRA reaction of alkenes, alkynes, and 1,n-enynes; carbo/heteroperfluoroalkylation of alkenes and isocyanides; and C–H/F perfluoroalkylation. This allows the expedient incorporation of various perfluoroalkyl groups into the molecular motifs. Perfluorinated functional groups are still in demand in pharmaceutical and material sciences; this short review discusses recent advances in photoinduced perfluoroalkylation methodologies and technologies.1 Introduction2 Photocatalytic Perfluoroalkylation of Alkenes, Alkynes, and 1,n- Enynes3 Photocatalytic Carboperfluoroalkylation or Heteroperfluoroalkylation of Alkenes, Alkynes, Isocyanides, and Hydrazones4 Photocatalytic ATRE Reactions of Alkenes with Perfluoroalkyl Halides5 Photocatalytic C–X (X = H, F) Bond Perfluoroalkylation6 Continuous Flow Strategies in Photocatalytic Perfluoroalkylation7 Conclusions
Collapse
|
16
|
Fang CZ, Zhang BB, Li B, Wang ZX, Chen XY. Water facilitated photolysis of perfluoroalkyl iodides via halogen bonding. Org Chem Front 2022. [DOI: 10.1039/d2qo00056c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy for the efficient water facilitated photolysis of perfluoroalkyl iodide has been established for the synthesis of various perfluoroalkylated products.
Collapse
Affiliation(s)
- Chang-Zhen Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baolin Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Wulkesch C, Czekelius C. Straightforward Synthesis of Fluorinated Enals via Photocatalytic α-Perfluoroalkenylation of Aldehydes. J Org Chem 2021; 86:7425-7438. [PMID: 34008975 DOI: 10.1021/acs.joc.1c00383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
(Per)fluorinated substances represent an important compound class with regard to drug design and material chemistry. We found a mild, operationally simple, and inexpensive photocatalytic perfluoroalkenylation reaction giving tetrasubstituted, highly electron-deficient enals straight from aldehydes. This one-step reaction tolerates various functional groups and can be applied to a wide range of substrates giving the products in yields of 52-84%.
Collapse
Affiliation(s)
- Christian Wulkesch
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Constantin Czekelius
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Li T, Liang K, Tang J, Ding Y, Tong X, Xia C. A photoexcited halogen-bonded EDA complex of the thiophenolate anion with iodobenzene for C(sp 3)–H activation and thiolation. Chem Sci 2021; 12:15655-15661. [PMID: 35003596 PMCID: PMC8654056 DOI: 10.1039/d1sc03667j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/23/2021] [Accepted: 10/20/2021] [Indexed: 01/26/2023] Open
Abstract
A direct photochemical thiolation of C(sp3)–H bond-containing substrates with thiophenol was developed. A halogen bonding-type EDA complex was found to trigger the downstream single electron transfer and hydrogen atom transfer process.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jiaying Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiaogang Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
19
|
Tang L, Yang F, Yang Z, Chen H, Cheng H, Zhang S, Zhou Q, Rao W. Application of Bifunctional 2-Amino-1,4-naphthoquinones in Visible-Light-Promoted Photocatalyst-Free Alkene Perfluoroalkyl-Alkenylation. Org Lett 2020; 23:519-524. [PMID: 33382626 DOI: 10.1021/acs.orglett.0c04036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple and practical photochemical strategy for intermolecular perfluoroalkyl-alkenylation of alkenes with 2-amino-1,4-naphthoquinones and perfluoroalkyl iodides has been demonstrated under visible-light irradiation. Mechanistic studies reveal that easily available 2-amino-1,4-naphthoquinone substrates can serve as efficient photosensitizers to activate perfluoroalkyl iodides through a photoredox process. Therefore, the developed radical relay reaction proceeds smoothly without additional transition metals and photocatalysts.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.,Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Xinyang 464000, China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Zhen Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Hanfei Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Hao Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Shuaifei Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Weihao Rao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
20
|
Bag D, Kour H, Sawant SD. Photo-induced 1,2-carbohalofunctionalization of C–C multiple bonds via ATRA pathway. Org Biomol Chem 2020; 18:8278-8293. [PMID: 33006347 DOI: 10.1039/d0ob01454k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Carbohalofunctionalization of C–C multiple bonds via atom transfer radical processes constitutes an efficient method for the construction of halogenated building blocks with complete atom economy. This review summarizes the recent advancements.
Collapse
Affiliation(s)
- Debojyoti Bag
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu
- India
| | - Harpreet Kour
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu
- India
| | - Sanghapal D. Sawant
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu
- India
| |
Collapse
|