1
|
Dawood DH, Anwar MM. Recent advances in the therapeutic insights of thiazole scaffolds as acetylcholinesterase inhibitors. Eur J Med Chem 2025; 287:117331. [PMID: 39938408 DOI: 10.1016/j.ejmech.2025.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Suppression of the acetylcholinesterase (AChE) enzyme is a prevalent strategy for curing diverse mental disorders, including Alzheimer's disease (AD) and the chronic autoimmune disease Myasthenia gravis. Acetylcholinesterase inhibitors promote cholinergic transmission via blocking AChE, which is implicated in the degradation and deficiency of acetylcholine. Various studies proved that the lack of cholinergic neurons in the central nervous system is the substantial reason for the behavioral abnormalities and cognitive retogradation that distinguish mental diseases such as dementia and AD. Moreover, thiazole scaffolds have emerged as prominent pharmacophores in drug discovery owing to their numerous outstanding therapeutic efficacy, comprising anti-acetylcholinesterase efficacy. This review presents various thiazole-based AChE inhibitors in the recent decade. In addition, the various interactions of thiazole derivatives within the active pocket of AChE have been highlighted. Also, structure-activity relationship (SAR) has been discussed.
Collapse
Affiliation(s)
- Dina H Dawood
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, p.o.box 12622, Egypt.
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Patowary P, Shakya A, Ghosh SK, Jamir L, Sahariah BJ, Gogoi N, Singh UP, Bhat HR. In Silico Study, Synthesis, and In Vitro Evaluation of Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activity of Novel N-Thiazole Substituted Acetamide Coumarin Derivatives. Chem Biodivers 2025:e202401524. [PMID: 39903847 DOI: 10.1002/cbdv.202401524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
In this study, a structurally directed pharmacophore hybridization technique is used to combine the two essential structural scaffolds coumarin and thiazoles in search of a new class of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor for Alzheimer's disease (AD). A library of 120 compounds was designed in two series 5a(1-15), 5b(16-30), 5c(31-45), 5d(46-60), and 6a(61-75), 6b(76-90), 6c(91-105), 6d(106-120) using various substituted phenol, β-ketoesters, and thiazole derivatives. Eleven compounds were identified as potential hybrids using molecular property filter analysis and molecular docking studies, and they comprise N-substituted thiazole coumarin derivatives. The docking results indicated that compounds 5b16 and 5c35 exhibited strong binding interactions with GLY116, GLY117, TYR332, and HIS438 (ranging from -27.42 to -24.18 kcal/mol) and GLY119, ASP72, and PHE288 (ranging from -32.21 to -25.92 kcal/mol) when tested against AChE (1EVE) and BuChE (1P0I) inhibitors. These compounds were synthesized via conventional methods and characterized by different spectroscopic methods. In vitro anti-cholinesterase activity results indicated that two compounds, for example, 5b16 and 5c35 showed potent to moderate activity against AChE and BuChE with IC50 (2.00 ± 0.09-29.63 ± 0.48) µM and (34.93 ± 0.62-17.92 ± 0.42) µM, respectively. Our study demonstrated the development of a novel class of hybrid coumarin thiazole derivatives as AChE and BuChE inhibitors, and these compounds could be utilized against ADs.
Collapse
Affiliation(s)
- Pooja Patowary
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
- Institute of Pharmaceutical Science, NETES, Mirza, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Lipoksangla Jamir
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | | | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Udaya Pratap Singh
- Department of Pharmaceutical Sciences, Drug Design and Discovery Laboratory, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
3
|
Marufa SS, Rahman T, Rahman MM, Rahman MM, Khan SJ, Jahan R, Nishino H, Alam MS, Haque MA. Design, synthesis, molecular docking, and dynamics studies of novel thiazole-Schiff base derivatives containing a fluorene moiety and the assessment of their antimicrobial and antioxidant activity. RSC Adv 2024; 14:35198-35214. [PMID: 39497776 PMCID: PMC11533417 DOI: 10.1039/d4ra04197f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
In this study, a series of eighteen fluorene-containing substituted thiazole derivatives were synthesized and characterized via spectral analyses. The proposed compounds were screened for their in vitro antimicrobial activity, and it was found that compound 2a displayed a significant zone of inhibition (20.3 ± 0.6 mm) against B. subtilis and compound 2b exhibited inhibitory activity (30.3 ± 0.6 mm) against a C. albicans fungal strain. Furthermore, antioxidant activity was evaluated for all analogues, where 2f exhibited a four-fold higher antioxidant capability (11.73 ± 1.22 μg mL-1) than the standard ascorbic acid. Oral bioavailability and toxicological parameters were considered, and most of the compounds satisfied Lipinski's rule of five and Veber's rule, except for one violation by a few derivatives. Molecular docking and molecular dynamics simulation were performed, providing more explicit ideas on the binding interaction and stability of compounds that exhibited wet lab activity. Average RMSD and RMSF values ranged between 0.5 Å and 2.5 Å, which indicated the stability of ligands inside the complex, yielding some engrossing insights.
Collapse
Affiliation(s)
- Sumita Saznin Marufa
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Tasnim Rahman
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Mohammad Mostafizur Rahman
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Md Mizanur Rahman
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Samira Jarin Khan
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Rownok Jahan
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Hiroshi Nishino
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University Kumamoto Japan
| | - Mohammad Sayed Alam
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Md Aminul Haque
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| |
Collapse
|
4
|
Nuha D, Evren AE, Özkan BNS, Gundogdu-Karaburun N, Karaburun AÇ. Design, synthesis, biological evaluation, and molecular modeling simulations of new phthalazine-1,4-dione derivatives as anti-Alzheimer's agents. Arch Pharm (Weinheim) 2024; 357:e2400067. [PMID: 38967191 DOI: 10.1002/ardp.202400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
The development of targeted phthalazine-1,4-dione acetylcholinesterase (AChE) inhibitors for treating Alzheimer's disease involved the synthesis of 32 compounds via a multistage process. Various analytical techniques confirmed the compounds' identities. Thirteen compounds were found to inhibit AChE by more than 50% without affecting butyrylcholinesterase (BChE). Among these, three compounds, 8m, 8n, and 8p, exhibited extraordinary activity similar to donepezil, a reference AChE inhibitor. During enzyme kinetic studies, compound 8n, displaying the highest AChE inhibitory activity, underwent evaluation at three concentrations (2 × IC50, IC50, and IC50/2). Lineweaver-Burk plots indicated mixed inhibition activity for compound 8n against AChE, suggesting a combination of competitive and noncompetitive characteristics. Additionally, effective derivatives 8m, 8n, and 8p exhibited high blood-brain barrier (BBB) permeability in in vitro parallel artificial membrane permeability assay tests. Molecular docking studies revealed that these compounds bind to the enzyme's active site residues in a position similar to donepezil. Molecular dynamic simulations confirmed the stability of the protein-ligand system, and the chemical reactivity characteristics of the compounds were investigated using density functional theory. The compounds' wide energy gaps suggest stability and therapeutic potential. This research represents a significant step toward finding a potential cure for Alzheimer's disease. However, further research and testing are required to determine the compounds' safety and efficacy. The unique structure of phthalazine derivatives makes them suitable for various biological activities, and these compounds show promise for developing effective drugs for treating Alzheimer's disease. Overall, the development of these targeted compounds is a crucial advancement in the search for an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Demokrat Nuha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
- Faculty of Pharmacy, University for Business and Technology, Prishtina, Kosovo
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | | | - Nalan Gundogdu-Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ahmet Çagri Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
5
|
Altıntop M, Sağlık Özkan BN, Özdemir A. Design, Synthesis, and Evaluation of New Pyrazolines As Small Molecule Inhibitors of Acetylcholinesterase. ACS OMEGA 2024; 9:31401-31409. [PMID: 39072133 PMCID: PMC11270571 DOI: 10.1021/acsomega.3c10490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 07/30/2024]
Abstract
In pursuit of identifying small molecule inhibitors of acetylcholinesterase (AChE), the synthesis of new 2-pyrazolines was performed efficiently. A modified spectrophotometric method was used to examine their inhibitory effects on AChE as well as butyrylcholinesterase. Four compounds (2a, 2g, 2j, and 2l) were identified as selective AChE inhibitors. Molecular docking studies were conducted to explore their potential interactions with the active site of AChE (PDB code: 4EY7). 1-(3-Nitrophenyl)-3-(thiophen-3-yl)-5-[4-(4-morpholinyl)phenyl]-2-pyrazoline (2l) exerted significant AChE inhibitory action with an IC50 value of 0.040 μM close to donepezil (IC50 = 0.021 μM). In addition to π-π interactions with Tyr341, Tyr124, and Trp86 residues, compound 2l was also capable of forming two hydrogen bonds and a salt bridge at the active site of AChE thanks to its nitro group at the meta position of the phenyl moiety linked to the N 1 position of the pyrazoline scaffold. The higher inhibitory effect of compound 2l on AChE when compared to other compounds in this series might be explained by these additional interactions. Based on the in vitro parallel artificial membrane permeability assay, compound 2l was found to have high blood-brain barrier permeability. In vitro and in silico studies suggest that compound 2l is a potent inhibitor of AChE, which is an important target for neurodegenerative disorders, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mehlika
Dilek Altıntop
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | | | - Ahmet Özdemir
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| |
Collapse
|
6
|
Tutuş B, Kaya AZ, Baz Y, Evren AE, Sağlik Özkan BN, Yurttaş L. Synthesis of new N-(5,6-methylenedioxybenzothiazole-2-yl)-2-[(substituted)thio/piperazine]acetamide/propanamide derivatives and evaluation of their AChE, BChE, and BACE-1 inhibitory activities. Drug Dev Res 2024; 85:e22214. [PMID: 38816986 DOI: 10.1002/ddr.22214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
In this study, the synthesis of N-(5,6-methylenedioxybenzothiazole-2-yl)-2-[(substituted)thio/piperazine]acetamide/propanamide derivatives (3a-3k) and to investigate their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and β-secretase 1 (BACE-1) inhibition activity were aimed. Mass, 1H NMR, and 13C NMR spectra were utilized to determine the structure of the synthesized compounds. Compounds 3b, 3c, 3f, and 3j showed AChE inhibitory activity which compound 3c (IC50 = 0.030 ± 0.001 µM) showed AChE inhibitory activity as high as the reference drug donepezil (IC50 = 0.0201 ± 0.0010 µM). Conversely, none of the compounds showed BChE activity. Compounds 3c and 3j showed the highest BACE-1 inhibitory activity and IC50 value was found as 0.119 ± 0.004 µM for compound 3j whereas IC50 value was 0.110 ± 0.005 µM for donepezil, which is one of the reference substance. Molecular docking studies have been carried out using the data retrieved from the server of the Protein Data Bank (PDBID: 4EY7 and 2ZJM). Using in silico approach behavior active compounds (3c and 3j) and their binding modes clarified.
Collapse
Affiliation(s)
- Beyzanur Tutuş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Kırıkhan Vocational School, Department of Pharmacy Services, Hatay Mustafa Kemal University, Hatay, Turkey
- Institute of Graduate Education, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Aybüke Züleyha Kaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Institute of Graduate Education, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Yonca Baz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Institute of Graduate Education, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | | | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
7
|
Adella Putri AD, Sembiring MH, Tuba S. Phytochemical constituents analysis in laminaria digitata for Alzheimer's disease: molecular docking and in-silico toxicity approach. Commun Integr Biol 2024; 17:2357346. [PMID: 38798825 PMCID: PMC11123516 DOI: 10.1080/19420889.2024.2357346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Alzheimer's disease (AD) is a common brain disease associated with cognitive impairment and dementia. donepezil, an acetylcholinesterase (AChE) inhibitor drug as a commercial AD drug represents a non-cost-effective treatment with the toxic effects reported. As the prevalence of AD increases, the development of effective therapeutic treatments is urgently required. Laminaria digitata is a brown seaweed claimed to be able to prevent and treat neurodegenerative diseases. Therefore, this study measured and compared the binding affinity and toxicity of seven common phytoconstituents in Laminaria digitata against acetylcholinesterase (AChE) with those of donepezil using a molecular docking approach. The binding free energy values of donepezil, dieckol, eckol, fucodiphlorethol G, 7-Phloroecol, laminaran, alginic acid, and fucoidan with acetylcholinesterase (AChE) were -12.3, -13.5, -10.5, -8,7, -9.7, -8.0, -10.3, and -7.4 kcal/mol. All ligands constantly interacted with the AChE amino acid residues, namely Tyr124. Dieckol, with the strongest and most stable interaction, is classified as class IV toxicity, with an LD50 value of 866 mg/kg. It has aryl hydrocarbon receptor (AhR) and mitochondrial membrane potential (MMP) toxicity at certain doses. Theoretically, based on Lipinski's rule, dieckol is likely to have poor absorption and permeation properties; therefore, several considerations during the drug discovery process are needed.
Collapse
Affiliation(s)
| | | | - Syahrul Tuba
- Faculty of Military Pharmacy, Indonesia Defense University, Bogor, Indonesia
| |
Collapse
|
8
|
Osmani̇ye D, Sağlik BN, Levent S, Çevi̇k UACAR, Ilgin S, Yurttaş L, Özkay Y, Karaburun AC, Kaplancikli ZA, Gundogdu-Karaburun N. Design, Synthesis, and Biological Effect Studies of Novel Benzofuran-Thiazolylhydrazone Derivatives as Monoamine Oxidase Inhibitors. ACS OMEGA 2024; 9:11388-11397. [PMID: 38496951 PMCID: PMC10938434 DOI: 10.1021/acsomega.3c07703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 03/19/2024]
Abstract
In recent studies, monoamine oxidase (MAO) inhibitory effects of various thiazolylhydrazone derivatives have been demonstrated. Within the scope of this study, 12 new compounds containing thiazolylhydrazone groups were synthesized. The structures of the obtained compounds were elucidated by 1H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS) methods. The inhibitory effects of the final compounds on MAO enzymes were investigated by means of in vitro methods. In addition to enzyme inhibition studies, enzyme kinetic studies of compounds with high inhibitory activity were examined, and their effects on substrate-enzyme relations were investigated. Additionaly, cytotoxicity tests were carried out to determine the toxicities of the selected compounds, and the compounds were found to be nontoxic. The interactions of the active compound with the active site of the enzyme were characterized by in silico methods.
Collapse
Affiliation(s)
- Derya Osmani̇ye
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Begüm Nurpelin Sağlik
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Ulviye ACAR Çevi̇k
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Sinem Ilgin
- Department of Pharmaceutical
Toxicology, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Ahmet Cagri Karaburun
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancikli
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Nalan Gundogdu-Karaburun
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| |
Collapse
|
9
|
Dawood DH, Srour AM, Omar MA, Farghaly TA, El-Shiekh RA. Synthesis and molecular docking simulation of new benzimidazole-thiazole hybrids as cholinesterase inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300201. [PMID: 37937360 DOI: 10.1002/ardp.202300201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/09/2023]
Abstract
Dementia is a cognitive disturbance that is generally correlated with central nervous system diseases, especially Alzheimer's disease. The limited number of medications available is insufficient to improve the lifestyle of the patients suffering from this disease. Thus, new benzimidazole-thiazole hybrids (3-10) were designed and synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory agents. The in vitro evaluation displayed that the derivatives 4b, 4d, 5b, 6a, 7a, and 8b demonstrated dual inhibitory efficiency against both AChE with IC50 ranging from 4.55 to 8.62 µM and BChE with IC50 ranging from 3.50 to 8.32 µM. By analyzing the Lineweaver-Burk plot, an uncompetitive form of inhibition was determined for the highly active compound 4d, revealing its inhibition type. The human telomerase reverse transcriptase-immortalized retinal pigment epithelial cell line was used to ensure the safety of the most potent cholinesterase inhibitors. Furthermore, compounds 4b, 4d, 5b, 6a, 7a, and 8b were evaluated for their neuroprotective and antioxidant properties, as well as their ability to suppress COX-2. The results demonstrated that compounds 4d, 5b, and 8b presented significant neuroprotection efficiency against H2 O2 -induced damage in SH-SY5Y cells with % cell viability of 67.42 ± 7.90%, 62.51 ± 6.71%, and 72.61 ± 8.10%, respectively, while the tested candidates did not reveal significant antioxidant activity. Otherwise, compounds 4b, 6a, 7a, and 8b displayed outstanding COX-2 inhibition effects with IC50 ranging from 0.050 to 0.080 μM relative to celecoxib (IC50 = 0.050 µM). In addition, molecular docking was carried out for the potent benzimidazole-thiazole hybrids with the active sites of both AChE (PDB ID: 4EY7) and BChE (PDB code: 1P0P). The tested candidates fit well in the active sites of both portions, with docking scores ranging from -8.65 to -6.64 kcal/mol (for AChE) and -8.71 to -7.73 kcal/mol (for BChE). In silico results show that the synthesized benzimidazole-thiazole hybrids have good physicochemical and pharmacokinetic properties with no Lipinski rule violations. The preceding results exhibited that compound 4d could be used as a new template for developing more significant cholinesterase inhibitors in the future.
Collapse
Affiliation(s)
- Dina H Dawood
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Mohamed A Omar
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Osmaniye D, Ahmad I, Sağlık BN, Levent S, Patel HM, Ozkay Y, Kaplancıklı ZA. Design, synthesis and molecular docking and ADME studies of novel hydrazone derivatives for AChE inhibitory, BBB permeability and antioxidant effects. J Biomol Struct Dyn 2023; 41:9022-9038. [PMID: 36325982 DOI: 10.1080/07391102.2022.2139762] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease that is characterized by memory and cognitive impairments that predominantly affects the elderly and is the most common cause of dementia. As is known, the AChE enzyme consists of two parts. In this work, 10 new hydrazones (3a-3j) were designed and synthesized. Naphthalene, indole, benzofuran and benzothiophene rings were used to interact with the PAS region. 4-fluorophenyl and 4-fluorobenzyl structures were preferred for interaction with the CAS region. In biological activity studies, the AChE and BChE inhibitory potentials of all compounds were evaluated using the in vitro Ellman method. The biological evaluation showed that compounds 3i and 3j displayed significant activity against AChE. The compounds 3i and 3j displayed IC50 values of 0.034 and 0.027 µM against AChE, respectively. The reference drug donepezil (IC50 = 0.021 µM) also displayed a significant inhibition against AChE. In addition, the antioxidant activities of the compounds were also evaluated. Derivatives 3i and 3j, which emerged active from both in vitro activity studies, were subjected to in vitro PAMPA tests to determine BBB permeability. Further docking simulation also revealed that these compounds (3i, 3j and donepezil) interacted with the enzyme active site in a similar manner to donepezil. A few parameters derived from MD simulation trajectories were computed and validated for the protein-ligand complex's stability under the dynamic conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Harun M Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
11
|
AkhtarVirk N, Iqbal J, ur-Rehman A, Rasool S, Abid MA, un-Nisa M, Saadiq M, khalid H, Shah SAA. Novel 1,2,4-triazoles as anti-enzymatic agents: Microwave versus conventional synthesis, characterization, docking and BSA binding studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Kılıçaslan D, Kurt AH, Köse M, Çeşme M, Güngör Ö, Oztabag CK, Doganer A. A Novel Donepezil–Caffeic Acid Hybrid: Synthesis, Biological Evaluation, and Molecular Docking Studies. BIOCHEMISTRY (MOSCOW) 2023; 88:50-63. [PMID: 37068881 DOI: 10.1134/s0006297923010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
A novel donepezil-caffeic acid (DP-CA) hybrid molecule was designed, synthesis, and investigated by molecular modeling. Its biological activity and protective effect were investigated by the IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. DP-CA was highly active against acetylcholine esterase and inhibited it at the micromolar concentrations. Fluorescence and UV-Vis spectroscopy studies showed strong binding of DP-CA to DNA. Moreover, DP-CA exhibited protective effects against H2O2-induced toxicity in U-118 MG glioblastoma cells. Finally, molecular docking showed a high affinity of DP-CA in all concentrations, and the active 4EY7 site exhibited essential residues with polar and apolar contacts. Taken together, these findings indicate that DP-CA could be a prospective multifunctional agent for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Derya Kılıçaslan
- Afsin Vocational School, Department of Chemistry and Chemical Processing Technologies, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| | - Akif Hakan Kurt
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Muhammet Köse
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Özge Güngör
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Cansu Kara Oztabag
- Department of Interdisciplinary Neuroscience, Bolu Abant Izzet Baysal University, Institute of Health Sciences, Bolu, Turkey
| | - Adem Doganer
- Department Biostatistics and Medical Informatics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
13
|
Faghih Z, Khabnadideh S, Sakhteman A, Shirazi AK, Yari HA, Chatraei A, Rezaei Z, Sadeghian S. Synthesis, biological evaluation and molecular modeling studies of novel carbazole-benzylpiperazine hybrids as acetylcholinesterase and butyrylcholinesterase inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Durmaz Ş, Evren AE, Sağlık BN, Yurttaş L, Tay NF. Synthesis, anticholinesterase activity, molecular docking, and molecular dynamic simulation studies of 1,3,4-oxadiazole derivatives. Arch Pharm (Weinheim) 2022; 355:e2200294. [PMID: 35972839 DOI: 10.1002/ardp.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Two new series of 1,3,4-oxadiazoles bearing pyridine and thiazole heterocycles (4a-h and 5a-h) were synthesized (2,5-disubstituted-1,3,4-oxadiazoles). The structures of these newly synthesized compounds were confirmed by 1 H nuclear magnetic resonance (NMR), 13 C NMR, high-resolution mass spectrometric and Fourier transform infrared spectroscopic methods. All these compounds were evaluated for their enzyme inhibitory activities against two cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). From the studies, we identified compounds 4a, 4h, 5a, 5d, and 5e as selective AChE inhibitors, with IC50 values ranging from 0.023 to 0.037 μM. Furthermore, docking studies of these compounds were performed at the active sites of their target enzymes. The molecular docking study showed that 5e possessed an ideal docking pose with interactions inside AChE.
Collapse
Affiliation(s)
- Şeyma Durmaz
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Asaf E Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Begüm N Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Naime F Tay
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
15
|
Arshad MF, Alam A, Alshammari AA, Alhazza MB, Alzimam IM, Alam MA, Mustafa G, Ansari MS, Alotaibi AM, Alotaibi AA, Kumar S, Asdaq SMB, Imran M, Deb PK, Venugopala KN, Jomah S. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022; 27:molecules27133994. [PMID: 35807236 PMCID: PMC9268695 DOI: 10.3390/molecules27133994] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
For many decades, the thiazole moiety has been an important heterocycle in the world of chemistry. The thiazole ring consists of sulfur and nitrogen in such a fashion that the pi (π) electrons are free to move from one bond to other bonds rendering aromatic ring properties. On account of its aromaticity, the ring has many reactive positions where donor–acceptor, nucleophilic, oxidation reactions, etc., may take place. Molecules containing a thiazole ring, when entering physiological systems, behave unpredictably and reset the system differently. These molecules may activate/stop the biochemical pathways and enzymes or stimulate/block the receptors in the biological systems. Therefore, medicinal chemists have been focusing their efforts on thiazole-bearing compounds in order to develop novel therapeutic agents for a variety of pathological conditions. This review attempts to inform the readers on three major classes of thiazole-bearing molecules: Thiazoles as treatment drugs, thiazoles in clinical trials, and thiazoles in preclinical and developmental stages. A compilation of preclinical and developmental thiazole-bearing molecules is presented, focusing on their brief synthetic description and preclinical studies relating to structure-based activity analysis. The authors expect that the current review may succeed in drawing the attention of medicinal chemists to finding new leads, which may later be translated into new drugs.
Collapse
Affiliation(s)
- Mohammed F. Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdullah Ayed Alshammari
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Mohammed Bader Alhazza
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Ibrahim Mohammed Alzimam
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Md Anish Alam
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Md Salahuddin Ansari
- Department of Pharmacy Practice, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Abdulelah M. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Abdullah A. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Suresh Kumar
- Drug Regulatory Affair, Department, Pharma Beistand, New Delhi 110017, India;
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah 13713, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Shahamah Jomah
- Pharmacy Department, Dr. Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
16
|
Elghazawy NH, Zaafar D, Hassan RR, Mahmoud MY, Bedda L, Bakr AF, Arafa RK. Discovery of New 1,3,4-Oxadiazoles with Dual Activity Targeting the Cholinergic Pathway as Effective Anti-Alzheimer Agents. ACS Chem Neurosci 2022; 13:1187-1205. [PMID: 35377601 DOI: 10.1021/acschemneuro.1c00766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Finding an effective anti-Alzheimer agent is quite challenging due to its multifactorial nature. As such, multitarget directed ligands (MTDLs) could be a promising paradigm for finding potential therapeutically effective new small-molecule bioactive agents against Alzheimer's disease (AD). We herein present the design, synthesis, and biological evaluation of a new series of compounds based on a 5-pyrid-3-yl-1,3,4-oxadiazole scaffold. Our synthesized compounds displayed excellent in vitro enzyme inhibitory activity at nanomolar (nM) concentrations against two major AD disease-modifying targets, i.e., acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Among our compounds, 5e was considered the best dual inhibitor of both AChE (IC50 = 50.87 nM) and BuChE (IC50 = 4.77 nM), where these values surpassed those of rivastagmine (the only FDA-approved dual AChE and BuChE inhibitor) in our study. Furthermore, in vivo and ex vivo testing of the hit compound 5e highlighted its significant AD-biotargeting effects including reducing the elevated levels of lipid peroxidation and glutathione (GSH), normalizing levels of 8-OHdG, and, most importantly, decreasing the levels of the well-known AD hallmark β-amyloid protein. Finally, the binding ability of 5e to each of our targets, AChE and BuChE, was confirmed through additional molecular docking and molecular dynamics (MD) simulations that reflected good interactions of 5e to the active site of both targets. Hence, we herein present a series of new 1,3,4-oxadiazoles that are promising leads for the development of dual-acting AChE and BuChE inhibitors for the management of AD.
Collapse
Affiliation(s)
- Nehal H Elghazawy
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 12055, Egypt
| | - Reham R Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| | - Mohamed Y Mahmoud
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Loay Bedda
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| | - Alaa F Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| |
Collapse
|
17
|
Design, Synthesis, and Evaluation of Novel 2 H-Benzo[b][1,4]thiazin-3(4 H)-one Derivatives as New Acetylcholinesterase Inhibitors. Molecules 2022; 27:molecules27072121. [PMID: 35408519 PMCID: PMC9000418 DOI: 10.3390/molecules27072121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a slowly progressive neurodegenerative disease that causes dementia in people aged 65 and over. In the present study, a series of thiadiazole hybrid compounds with benzothiazine derivatives as acetylcholinesterase inhibitors were developed and evaluated for their biological activity. The AChE and BChE inhibition potentials of all compounds were evaluated by using the in vitro Ellman method. The biological evaluation showed that compounds 3i and 3j displayed significant inhibitory activity against AChE. Compounds 3i and 3j showed IC50 values of 0.027 µM and 0.025 µM against AChE, respectively. The reference drug donepezil (IC50 = 0.021 µM) also showed significant inhibition against AChE. Further docking simulation also revealed that these compounds (3i and 3j) interacted with the active site of the enzyme similarly to donepezil. The antioxidant study revealed that compounds 3i and 3j exhibited greater antioxidant effects. An in vitro blood–brain barrier permeability study showed that compounds 3i and 3j are promising compounds against AD. The cytotoxicity study of compounds 3i and 3j showed non-cytotoxic with an IC50 value of 98.29 ± 3.98 µM and 159.68 ± 5.53 µM against NIH/3T3 cells, respectively.
Collapse
|
18
|
Alkyl 2-(2-(arylidene)alkylhydrazinyl)thiazole-4-carboxylates: Synthesis, acetyl cholinesterase inhibition and docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Srivastava S, Ahmad R, Khare SK. Alzheimer's disease and its treatment by different approaches: A review. Eur J Med Chem 2021; 216:113320. [PMID: 33652356 DOI: 10.1016/j.ejmech.2021.113320] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that impairs mental ability development and interrupts neurocognitive function. This neuropathological condition is depicted by neurodegeneration, neural loss, and development of neurofibrillary tangles and Aβ plaques. There is also a greater risk of developing AD at a later age for people with cardiovascular diseases, hypertension and diabetes. In the biomedical sciences, effective treatment for Alzheimer's disease is a severe obstacle. There is no such treatment to cure Alzheimer's disease. The drug present in the market show only symptomatic relief. The cause of Alzheimer's disease is not fully understood and the blood-brain barrier restricts drug efficacy are two main factors that hamper research. Stem cell-based therapy has been seen as an effective, secure, and creative therapeutic solution to overcoming AD because of AD's multifactorial nature and inadequate care. Current developments in nanotechnology often offer possibilities for the delivery of active drug candidates to address certain limitations. The key nanoformulations being tested against AD include polymeric nanoparticles (NP), inorganic NPs and lipid-based NPs. Nano drug delivery systems are promising vehicles for targeting several therapeutic moieties by easing drug molecules' penetration across the CNS and improving their bioavailability. In this review, we focus on the causes of the AD and their treatment by different approaches.
Collapse
Affiliation(s)
- Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|