1
|
Tan N, Zhang Y. Associations between dietary fatty acids and kidney stones. Sci Rep 2025; 15:2500. [PMID: 39833367 PMCID: PMC11747447 DOI: 10.1038/s41598-025-86850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Kidney stones represent a significant global health challenge, with dietary habits playing a crucial role in their formation. This study investigates the association between dietary fatty acid intake-specifically saturated (SFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA)-and the prevalence of kidney stones in a U.S. adult population, aiming to inform potential dietary prevention strategies. Data from the National Health and Nutrition Examination Survey (NHANES) spanning 2007-2018 were analyzed, including 30,716 participants. Logistic regression models were used to assess the relationship between fatty acid intake and kidney stones prevalence, adjusting for demographic and health-related covariates such as age, sex, BMI, diabetes status, physical activity, and other dietary factors. Additional analyses were conducted to explore the effects of fatty acid intake as a percentage of total energy and the impact of various fatty acid ratios. Higher intakes of SFA, MUFA, and PUFA were associated with increased odds of kidney stones prevalence. Specifically, each 10 g/day increase in SFA, MUFA, and PUFA intake was linked to a 22% [OR = 1.22, 95% CI: 1.11-1.34, p = 0.002], 10% [OR = 1.10, 95% CI: 1.00-1.22, p = 0.052] and 21% [OR = 1.21, 95% CI: 1.10-1.33, p = 0.001] higher odds of kidney stones, respectively. These associations were generally consistent across various subgroups. Additional analyses examining fatty acid intake as a percentage of total energy and various fatty acid ratios yielded compatible findings. The findings suggest a modest association between higher dietary fatty acid intake and increased odds of kidney stones prevalence. While the observed odds increases were relatively small, these results highlight the importance of considering dietary fatty acid types in kidney stones prevention strategies. Future research is needed to further elucidate the underlying mechanisms and to refine dietary recommendations.
Collapse
Affiliation(s)
- Ning Tan
- Department of Urology, The Affiliated Second Hospital, Hengyang Medical school, University of South China, Hengyang, 421009, China
| | - Ya Zhang
- Department of Urology, The Affiliated Second Hospital, Hengyang Medical school, University of South China, Hengyang, 421009, China.
| |
Collapse
|
2
|
Shen X, Miao S, Zhang Y, Guo X, Li W, Mao X, Zhang Q. Stearic acid metabolism in human health and disease. Clin Nutr 2025; 44:222-238. [PMID: 39709650 DOI: 10.1016/j.clnu.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
Named after the Greek term for "hard fat", stearic acid has gradually entered people's field of vision. As an important component of various physiological cellular functions, stearic acid plays a regulatory role in diverse aspects of energy metabolism and signal transduction. Its applications range from serving as a bodily energy source to participating in endogenous biosynthesis. Similar to palmitate, stearic acid serves as a primary substrate for the stearoyl coenzyme A desaturase, which catalyzes the conversion of stearate to oleate and is involved in the synthesis of triglyceride and other complex lipids. Additionally, stearic acid functions as a vital signaling molecule in pathological processes such as cardiovascular diseases, diabetes development, liver injury and even nervous system disorders. Therefore, we conduct a comprehensive review of stearic acid, summarizing its role in various diseases and attempting to provide a systematic overview of its homeostasis, physiological functions, and pathological process. From a medical standpoint, we also explore potential applications and discuss stearic acid as a potential therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuo Miao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingying Guo
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenxian Li
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Dal N, Bilici S. Dietary Modulations in Preventing Cardiometabolic Risk in Individuals with Type 2 Diabetes. Curr Nutr Rep 2024; 13:412-421. [PMID: 38767826 PMCID: PMC11327185 DOI: 10.1007/s13668-024-00541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE OF REVIEW Type 2 diabetes mellitus (T2DM) is a complex health issue include obesity, high cholesterol, high blood pressure, and chronic inflammation that increase the risk of cardiovascular diseases (CVDs). CVDs are of great concern in the disease progression and prognosis of T2DM. This review is a comprehensive examination of the literature on the relationship between T2DM and cardiovascular risk, nutrition-related cardiometabolic risk (CMR) factors, and impact of dietary modulations on CMR. RECENT FINDINGS In recent years the researches has been focus on the importance of a comprehensive treatment approach like dietary modulations to address multiple cardiovascular risk reductions, including hypertension and dyslipidemia. Modulation of dietary patterns are the most promising interventions to prevent CMR factors and T2DM via affecting the body weight, glucose control, and microbial diversity of individuals. Current evidence suggests that high-quality dietary patterns such as the Dietary Approaches to Stop Hypertension (DASH) eating plan and the Mediterranean diet is important in the metabolic control processes of T2DM with anti-inflammatory and antioxidant compounds, glucagon-like peptide agonist compounds, and intestinal microbiota changes. Nutrition plays a critical role in preventing and improving CVD outcomes in patients with T2DM. Dietary modulations should be planned considering individual differences in responses to dietary composition and nutritional changes, personal preferences, eating behaviors and gut microbiota differences.
Collapse
Affiliation(s)
- Nursel Dal
- Department of Nutrition and Dietetics, Bandirma Onyedi Eylul University, Balikesir, Turkey.
| | - Saniye Bilici
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Gouaref I, Otmane A, Makrelouf M, Abderrhmane SA, Haddam AEM, Koceir EA. Crucial Interactions between Altered Plasma Trace Elements and Fatty Acids Unbalance Ratio to Management of Systemic Arterial Hypertension in Diabetic Patients: Focus on Endothelial Dysfunction. Int J Mol Sci 2024; 25:9288. [PMID: 39273236 PMCID: PMC11395650 DOI: 10.3390/ijms25179288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The coexistence of SAH with T2DM is a common comorbidity. In this study, we investigated the link between altered plasma antioxidant trace elements (ATE: manganese, selenium, zinc, and copper) and fatty acids ratio (FAR: polyunsaturated/saturated) imbalance as transition biomarkers between vascular pathology (SAH) to metabolic pathology (T2DM). Our data revealed strong correlation between plasma ATE and FAR profile, which is modified during SAH-T2DM association compared to the healthy group. This relationship is mediated by lipotoxicity (simultaneously prominent visceral adipose tissue lipolysis, significant flow of non-esterified free fatty acids release, TG-Chol-dyslipidemia, high association of total SFA, palmitic acid, arachidonic acid, and PUFA ω6/PUFA ω3; drop in tandem of PUFA/SFA and EPA + DHA); oxidative stress (lipid peroxidation confirmed by TAS depletion and MDA rise, concurrent drop of Zn/Cu-SOD, GPx, GSH, Se, Zn, Se/Mn, Zn/Cu; concomitant enhancement of Cu, Mn, and Fe); endothelial dysfunction (endotheline-1 increase); athero-thrombogenesis risk (concomitant rise of ApoB100/ApoA1, Ox-LDL, tHcy, and Lp(a)), and inflammation (higher of Hs-CRP, fibrinogen and ferritin). Our study opens to new therapeutic targets and to better dietary management, such as to establishing dietary ATE and PUFA ω6/PUFA ω3 or PUFA/SFA reference values for atherosclerotic risk prevention in hypertensive/diabetic patients.
Collapse
Affiliation(s)
- Ines Gouaref
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| | - Amel Otmane
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Mohamed Makrelouf
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Samir Ait Abderrhmane
- Diabetology Unit, University Hospital Center, Mohamed Seghir Nekkache (ex. HCA de Aïn Naâdja), Algiers 16208, Algeria
| | - Ali El Mahdi Haddam
- Diabetology Unit, University Hospital Center, Mohamed Lamine Debaghine, Algiers I-University, Bab El Oued, Algiers 16000, Algeria
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| |
Collapse
|
5
|
Savvopoulos S, Hatzikirou H, Jelinek HF. Comparative Analysis of Biomarkers in Type 2 Diabetes Patients With and Without Comorbidities: Insights Into the Role of Hypertension and Cardiovascular Disease. Biomark Insights 2024; 19:11772719231222111. [PMID: 38707193 PMCID: PMC11069335 DOI: 10.1177/11772719231222111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/04/2023] [Indexed: 05/07/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) are 90% of diabetes cases, and its prevalence and incidence, including comorbidities, are rising worldwide. Clinically, diabetes and associated comorbidities are identified by biochemical and physical characteristics including glycemia, glycated hemoglobin (HbA1c), and tests for cardiovascular, eye and kidney disease. Objectives Diabetes may have a common etiology based on inflammation and oxidative stress that may provide additional information about disease progression and treatment options. Thus, identifying high-risk individuals can delay or prevent diabetes and its complications. Design In patients with or without hypertension and cardiovascular disease, as part of progression from no diabetes to T2DM, this research studied the changes in biomarkers between control and prediabetes, prediabetes to T2DM, and control to T2DM, and classified patients based on first-attendance data. Control patients and patients with hypertension, cardiovascular, and with both hypertension and cardiovascular diseases are 156, 148, 61, and 216, respectively. Methods Linear discriminant analysis is used for classification method and feature importance, This study examined the relationship between Humanin and mitochondrial protein (MOTSc), mitochondrial peptides associated with oxidative stress, diabetes progression, and associated complications. Results MOTSc, reduced glutathione and glutathione disulfide ratio (GSH/GSSG), interleukin-1β (IL-1β), and 8-isoprostane were significant (P < .05) for the transition from prediabetes to t2dm, highlighting importance of mitochondrial involvement. complement component 5a (c5a) is a biomarker associated with disease progression and comorbidities, gsh gssg, monocyte chemoattractant protein-1 (mcp-1), 8-isoprostane being most important biomarkers. Conclusions Comorbidities affect the hypothesized biomarkers as diabetes progresses. Mitochondrial oxidative stress indicators, coagulation, and inflammatory markers help assess diabetes disease development and provide appropriate medications. Future studies will examine longitudinal biomarker evolution.
Collapse
Affiliation(s)
- Symeon Savvopoulos
- Mathematics Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Herbert F Jelinek
- Department of Biomedical Engineering and Health Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Chikoti S, Najiya U, Sumanlatha G, Jahan P. Cytokine gene variants of TNF-α and IL-10 in the propensity of type 2 diabetes in south Indian population. J Diabetes Complications 2022; 36:108304. [PMID: 36148706 DOI: 10.1016/j.jdiacomp.2022.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Chronic inflammation plays an important role in type 2 diabetes mellitus (T2DM), a common endocrinological pro-inflammatory disorder associated with insulin resistance. The objective of the present study is to see individual and combined effect of TNF-α (rs361525, rs1800629) and IL-10 (rs1800872, rs1800896) genes on T2DM susceptibility The genotyping was carried out in 200 T2DM patients and 200 healthy controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using suitable primers. The results shown that TNF-α (GA of rs361525 & rs1800629) and IL-10 (AA of rs1800872 & GA of rs1800896) genes are significantly linked with T2DM development. The presence of AA-GA genotype combination for both TNF-α and IL-10 genes were elevating the risk of T2DM. Moreover, individuals bearing haplotypes AAAA, AACA and AAAG experience the increased risk of T2DM. Furthermore, gene-gene interaction analysis shown that TNF-α (GA of rs361525 & rs1800896) gene redundantly confer 3.4-fold elevated risk for T2DM. In gene-environment interaction, GA of TNF-α -1800896, W/H ratio and TG/HDL ratio were redundantly interacted each other and increase the risk of T2DM by 67-times. In conclusion, our results reveal that there is a significant association between foresaid TNF-α, IL-10 gene promoter polymorphisms and T2DM development. To the best of our knowledge this study is the first of its kind in the literature reporting the epistatic association of TNF-α (rs1800629G/A) gene with TG/HDL ratio and W/H ratio over IL-10 gene polymorphisms for T2DM susceptibility among south Indians.
Collapse
Affiliation(s)
- Swetha Chikoti
- Department of Genetics, Osmania University, Hyderabad, India
| | - Umme Najiya
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Parveen Jahan
- School of Sciences, Maulana Azad National Urdu University, Hyderabad, India.
| |
Collapse
|
7
|
Cai Q, Xing CY, Zhu J, Wang Y, Lu F, Peng J. Associations between triglyceride-glucose index and different hypertension subtypes: A population-based study in China. Front Cardiovasc Med 2022; 9:901180. [PMID: 36035963 PMCID: PMC9408994 DOI: 10.3389/fcvm.2022.901180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Abnormal glycolipid metabolism plays a crucial role in hypertension. While an elevated triglyceride-glucose (TyG) index has been recognized as a risk factor for developing hypertension, the associations between the TyG index and different hypertension subtypes, namely, isolated systolic hypertension (ISH), isolated diastolic hypertension (IDH), and systolic-diastolic hypertension (SDH), remain unclear. This study was designed to investigate the associations between the TyG index and hypertension subtypes in a general Chinese population. Materials and methods In a sample of 16,793 participants from Shandong Province, China, multivariate logistic regression analyses were performed to examine the associations between the TyG index and different hypertension subtypes. Loess smooth curves were fitted to visualize the trends. Stratified analyses were conducted to further assess the potential interactions in the associations between the TyG index and different hypertension subtypes. Results A higher TyG index was associated with an increased odds of having IDH (OR = 2.94, 95% CI: 1.66–5.23) and SDH (OR = 1.82, 95% CI: 1.33–2.49), whereas no apparent relationship was observed between TyG index and ISH. With respect to sex, the effect of TyG index on having IDH and SDH was significant in women, but not in men. Participants with lower lipid profiles and glucose levels demonstrated a stronger strength of association between the TyG index and IDH as compared with the TyG index-SDH association. Stratified analysis showed that participants with a higher TyG index were more than 3 times more likely to have IDH and SDH among persons aged 18–42 years. Significant interactions were observed between TyG index and sex, age, and high-density lipoprotein cholesterol (HDL-C) in the SDH group, and a significant interaction was also found between TyG index and body mass index (BMI) in the ISH group. Conclusion Triglyceride-glucose index may potentially serve as a novel indicator for IDH and SDH. Our findings could also inform the development and implementation of targeted screening for hypertension.
Collapse
Affiliation(s)
- Qian Cai
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Cathleen Y. Xing
- Tuberculosis Control and Prevention Program, San Francisco Department of Public Health, San Francisco, CA, United States
| | - Jiang Zhu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Fanghong Lu
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Peng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Jie Peng,
| |
Collapse
|
8
|
Jachimowicz K, Winiarska-Mieczan A, Tomaszewska E. The Impact of Herbal Additives for Poultry Feed on the Fatty Acid Profile of Meat. Animals (Basel) 2022; 12:ani12091054. [PMID: 35565481 PMCID: PMC9101922 DOI: 10.3390/ani12091054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Researchers often found that herbal additives to chicken feed can favorably alter the fatty acid profile of the meat. The most desirable effects of diet modification comprise an increased content of polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA) and a reduced content of saturated fatty acids (SFA) in the breast and thigh muscles. A modified fatty acid profile contributes to improvement in the quality of poultry meat, which is reflected in its increased consumption. However, it may be problematic that PUFAs are oxidized easier than other lipids, which can have a negative impact on the sensory traits of meat. By contrast, herbs and herbal products contain antioxidants that can prevent the oxidation of unsaturated fatty acids and cholesterol present in animal-origin products and increase the antioxidant potential of the consumer’s body. This paper aims to review the influence of herbal additives for broiler chicken diets on the fatty acid profile of poultry meat. Special attention was paid to changes in the content of SFAs, MUFAs, and PUFAs, but also alterations in the omega-6:omega-3 ratio. The presented reference literature supports the statement that herbs and bioactive components of herbs added to chicken diets can improve the quality of broiler chicken meat by altering the content of fatty acids.
Collapse
Affiliation(s)
- Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence:
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| |
Collapse
|
9
|
Duflot T, Tu L, Leuillier M, Messaoudi H, Groussard D, Feugray G, Azhar S, Thuillet R, Bauer F, Humbert M, Richard V, Guignabert C, Bellien J. Preventing the Increase in Lysophosphatidic Acids: A New Therapeutic Target in Pulmonary Hypertension? Metabolites 2021; 11:metabo11110784. [PMID: 34822442 PMCID: PMC8621392 DOI: 10.3390/metabo11110784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of premature death and disability in humans that are closely related to lipid metabolism and signaling. This study aimed to assess whether circulating lysophospholipids (LPL), lysophosphatidic acids (LPA) and monoacylglycerols (MAG) may be considered as potential therapeutic targets in CVD. For this objective, plasma levels of 22 compounds (13 LPL, 6 LPA and 3 MAG) were monitored by liquid chromatography coupled with tandem mass spectrometry (HPLC/MS2) in different rat models of CVD, i.e., angiotensin-II-induced hypertension (HTN), ischemic chronic heart failure (CHF) and sugen/hypoxia(SuHx)-induced pulmonary hypertension (PH). On one hand, there were modest changes on the monitored compounds in HTN (LPA 16:0, 18:1 and 20:4, LPC 16:1) and CHF (LPA 16:0, LPC 18:1 and LPE 16:0 and 18:0) models compared to control rats but these changes were no longer significant after multiple testing corrections. On the other hand, PH was associated with important changes in plasma LPA with a significant increase in LPA 16:0, 18:1, 18:2, 20:4 and 22:6 species. A deleterious impact of LPA was confirmed on cultured human pulmonary smooth muscle cells (PA-SMCs) with an increase in their proliferation. Finally, plasma level of LPA(16:0) was positively associated with the increase in pulmonary artery systolic pressure in patients with cardiac dysfunction. This study demonstrates that circulating LPA may contribute to the pathophysiology of PH. Additional experiments are needed to assess whether the modulation of LPA signaling in PH may be of interest.
Collapse
Affiliation(s)
- Thomas Duflot
- UNIROUEN, INSERM U1096, CHU Rouen, Department of Pharmacology, Normandie University, F-76000 Rouen, France; (V.R.); (J.B.)
- Correspondence: ; Tel.: +33-2-32-88-84-91
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France; (L.T.); (R.T.); (M.H.); (C.G.)
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, F-92290 Châtenay-Malabry, France
| | - Matthieu Leuillier
- UNIROUEN, INSERM U1096, Normandie University, F-76000 Rouen, France; (M.L.); (H.M.); (D.G.); (S.A.)
| | - Hind Messaoudi
- UNIROUEN, INSERM U1096, Normandie University, F-76000 Rouen, France; (M.L.); (H.M.); (D.G.); (S.A.)
| | - Déborah Groussard
- UNIROUEN, INSERM U1096, Normandie University, F-76000 Rouen, France; (M.L.); (H.M.); (D.G.); (S.A.)
| | - Guillaume Feugray
- UNIROUEN, INSERM U1096, CHU Rouen, Department of General Biochemistry, Normandie University, F-76000 Rouen, France;
| | - Saïda Azhar
- UNIROUEN, INSERM U1096, Normandie University, F-76000 Rouen, France; (M.L.); (H.M.); (D.G.); (S.A.)
| | - Raphaël Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France; (L.T.); (R.T.); (M.H.); (C.G.)
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, F-92290 Châtenay-Malabry, France
| | - Fabrice Bauer
- UNIROUEN, INSERM U1096, CHU Rouen, Department of Cardiology, Normandie University, F-76000 Rouen, France;
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France; (L.T.); (R.T.); (M.H.); (C.G.)
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, F-92290 Châtenay-Malabry, France
| | - Vincent Richard
- UNIROUEN, INSERM U1096, CHU Rouen, Department of Pharmacology, Normandie University, F-76000 Rouen, France; (V.R.); (J.B.)
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France; (L.T.); (R.T.); (M.H.); (C.G.)
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, F-92290 Châtenay-Malabry, France
| | - Jérémy Bellien
- UNIROUEN, INSERM U1096, CHU Rouen, Department of Pharmacology, Normandie University, F-76000 Rouen, France; (V.R.); (J.B.)
| |
Collapse
|
10
|
Adipose-derived stem cells and obesity: The spear and shield relationship. Genes Dis 2021; 10:175-186. [PMID: 37013055 PMCID: PMC10066342 DOI: 10.1016/j.gendis.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/11/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
With the transformation of modern lifestyles and population ageing, obesity has become a global epidemic, as one of the important threat to human health of chronic non-communicable diseases (NCD). Stem cell therapy seems promising as an alternative strategy for managing obesity and related metabolic problems. Adipose tissue-derived stem cells (ADSCs) have received widespread attention, which provides new ideas for the treatment of obesity and various metabolic-related diseases, due to their abundant reserves, easy acquisition, rapid expansion, and multi-directional differentiation potential, low immunogenicity and many other advantages. Accordingly, there seems to be a "shield and spear paradox" in the relationship between ADSCs and obesity. In this review, we emphatically summarized the role of ADSCs in the occurrence and development of obesity and related metabolic disease processes, in order to pave the way for clinical practice.
Collapse
|
11
|
Liput KP, Lepczyński A, Nawrocka A, Poławska E, Ogłuszka M, Jończy A, Grzybek W, Liput M, Szostak A, Urbański P, Roszczyk A, Pareek CS, Pierzchała M. Effects of Three-Month Administration of High-Saturated Fat Diet and High-Polyunsaturated Fat Diets with Different Linoleic Acid (LA, C18:2n-6) to α-Linolenic Acid (ALA, C18:3n-3) Ratio on the Mouse Liver Proteome. Nutrients 2021; 13:1678. [PMID: 34063343 PMCID: PMC8156955 DOI: 10.3390/nu13051678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to evaluate the effect of different types of high-fat diets (HFDs) on the proteomic profile of mouse liver. The analysis included four dietary groups of mice fed a standard diet (STD group), a high-fat diet rich in SFAs (SFA group), and high-fat diets dominated by PUFAs with linoleic acid (LA, C18:2n-6) to α-linolenic acid (ALA, C18:3n-3) ratios of 14:1 (14:1 group) and 5:1 (5:1 group). After three months of diets, liver proteins were resolved by two-dimensional gel electrophoresis (2DE) using 17 cm non-linear 3-10 pH gradient strips. Protein spots with different expression were identified by MALDI-TOF/TOF. The expression of 13 liver proteins was changed in the SFA group compared to the STD group (↓: ALB, APOA1, IVD, MAT1A, OAT and PHB; ↑: ALDH1L1, UniProtKB-Q91V76, GALK1, GPD1, HMGCS2, KHK and TKFC). Eleven proteins with altered expression were recorded in the 14:1 group compared to the SFA group (↓: ARG1, FTL1, GPD1, HGD, HMGCS2 and MAT1A; ↑: APOA1, CA3, GLO1, HDHD3 and IVD). The expression of 11 proteins was altered in the 5:1 group compared to the SFA group (↓: ATP5F1B, FTL1, GALK1, HGD, HSPA9, HSPD1, PC and TKFC; ↑: ACAT2, CA3 and GSTP1). High-PUFA diets significantly affected the expression of proteins involved in, e.g., carbohydrate metabolism, and had varying effects on plasma total cholesterol and glucose levels. The outcomes of this study revealed crucial liver proteins affected by different high-fat diets.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, K. Janickiego 32 Str., 71-270 Szczecin, Poland;
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Weronika Grzybek
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Michał Liput
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute of the Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Agnieszka Szostak
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Paweł Urbański
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Agnieszka Roszczyk
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Chandra S. Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| |
Collapse
|