1
|
Peluso P, Chankvetadze B. Recent developments in molecular modeling tools and applications related to pharmaceutical and biomedical research. J Pharm Biomed Anal 2024; 238:115836. [PMID: 37939549 DOI: 10.1016/j.jpba.2023.115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/21/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
In modern pharmaceutical and biomedical research, molecular modeling represents a useful tool to explore processes and their mechanistic bases at the molecular level. Integrating experimental and virtual analysis is a fruitful approach to study ligand-receptor interaction in chemical, biochemical and biological environments. In these fields, molecular docking and molecular dynamics are considered privileged techniques for modeling (bio)macromolecules and related complexes. This review aims to present the current landscape of molecular modeling in pharmaceutical and biomedical research by examining selected representative applications published in the last years and highlighting current topics and trends of this field. Thus, a systematic compilation of all published literature has not been attempted herein. After a brief overview of the main theoretical and computational tools used to investigate mechanisms at molecular level, recent applications of molecular modeling in drug discovery, ligand binding and for studying protein conformation and function will be discussed. Furthermore, specific sections will be devoted to the application of molecular modeling for unravelling enantioselective mechanisms underlying the enantioseparation of chiral compounds of pharmaceutical and biomedical interest as well as for studying new forms of noncovalent interactivity identified in biochemical and biological environments. The general aim of this review is to provide the reader with a modern overview of the topic, highlighting advancements and outlooks as well as drawbacks and pitfalls still affecting the applicability of theoretical and computational methods in the field of pharmaceutical and biomedical research.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB-CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy.
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| |
Collapse
|
2
|
Sechi B, Dessì A, Dallocchio R, Tsetskhladze N, Chankvetadze B, Pérez-Baeza M, Cossu S, Jibuti G, Mamane V, Peluso P. Unravelling dispersion forces in liquid-phase enantioseparation. Part I: Impact of ferrocenyl versus phenyl groups. Anal Chim Acta 2023; 1278:341725. [PMID: 37709466 DOI: 10.1016/j.aca.2023.341725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Highly ordered chiral secondary structures as well as multiple (tunable) recognition sites are the keys to success of polysaccharide carbamate-based chiral selectors in enantioseparation science. Hydrogen bonds (HBs), dipole-dipole, and π-π interactions are classically considered the most frequent noncovalent interactions underlying enantioselective recognition with these chiral selectors. Very recently, halogen, chalcogen and π-hole bonds were also identified as interactions working in polysaccharide carbamate-based selectors to promote enantiomer distinction. On the contrary, the function of dispersion interactions in this field was not explored so far. RESULTS The enantioseparation of chiral ferrocenes featuring chiral axis or chiral plane as stereogenic elements was performed by comparing five polysaccharide carbamate-based chiral columns, with the aim to identify enantioseparation outcomes that could be reasonably determined by dispersion forces, making available a reliable experimental data set for future theoretical studies to confirm the heuristic hypothesis. The effects of mobile phase polarity and temperature on the enantioseparation were considered, and potential recognition sites on analytes and selectors were evaluated by electrostatic potential (V) analysis and molecular dynamics (MD). In this first part, the enantioseparation of 3,3'-dibromo-5,5'-bis-ferrocenylethynyl-4,4'-bipyridine bearing two ferrocenylethynyl units linked to an axially chiral core was performed and compared to that of the analyte featuring the same structural motif with two phenyl groups in place of the ferrocenyl moieties. The results of this study showed the superiority of the ferrocenyl compared to the phenyl group, as a structural element favouring enantiodifferentiation. SIGNIFICANCE AND NOVELTY Even if dispersion (London) forces have been envisaged acting in liquid-phase enantioseparations, focused studies to explore possible contributions of dispersion forces with polysaccharide carbamate-based selectors are practically missing. This study allowed us to collect experimental information that support the involvement of dispersion forces as contributors to liquid-phase enantioseparation, paving the way to a new picture in this field.
Collapse
Affiliation(s)
- Barbara Sechi
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy
| | - Nutsa Tsetskhladze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179, Tbilisi, Georgia
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179, Tbilisi, Georgia
| | - Mireia Pérez-Baeza
- Departamento de Química Analítica, Universitat de València, Burjassot, València, Spain
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi DSMN, Università Ca' Foscari Venezia, Via Torino 155, I-30172, Mestre Venezia, Italy
| | - Giorgi Jibuti
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179, Tbilisi, Georgia
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR, CNRS 7177, Equipe LASYROC, 1 Rue Blaise Pascal, 67008, Strasbourg Cedex, France.
| | - Paola Peluso
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy.
| |
Collapse
|
3
|
Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. Methylammonium Tetrel Halide Perovskite Ion Pairs and Their Dimers: The Interplay between the Hydrogen-, Pnictogen- and Tetrel-Bonding Interactions. Int J Mol Sci 2023; 24:10554. [PMID: 37445738 DOI: 10.3390/ijms241310554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The structural stability of the extensively studied organic-inorganic hybrid methylammonium tetrel halide perovskite semiconductors, MATtX3 (MA = CH3NH3+; Tt = Ge, Sn, Pb; X = Cl, Br, I), arises as a result of non-covalent interactions between an organic cation (CH3NH3+) and an inorganic anion (TtX3-). However, the basic understanding of the underlying chemical bonding interactions in these systems that link the ionic moieties together in complex configurations is still limited. In this study, ion pair models constituting the organic and inorganic ions were regarded as the repeating units of periodic crystal systems and density functional theory simulations were performed to elucidate the nature of the non-covalent interactions between them. It is demonstrated that not only the charge-assisted N-H···X and C-H···X hydrogen bonds but also the C-N···X pnictogen bonds interact to stabilize the ion pairs and to define their geometries in the gas phase. Similar interactions are also responsible for the formation of crystalline MATtX3 in the low-temperature phase, some of which have been delineated in previous studies. In contrast, the Tt···X tetrel bonding interactions, which are hidden as coordinate bonds in the crystals, play a vital role in holding the inorganic anionic moieties (TtX3-) together. We have demonstrated that each Tt in each [CH3NH3+•TtX3-] ion pair has the capacity to donate three tetrel (σ-hole) bonds to the halides of three nearest neighbor TtX3- units, thus causing the emergence of an infinite array of 3D TtX64- octahedra in the crystalline phase. The TtX44- octahedra are corner-shared to form cage-like inorganic frameworks that host the organic cation, leading to the formation of functional tetrel halide perovskite materials that have outstanding optoelectronic properties in the solid state. We harnessed the results using the quantum theory of atoms in molecules, natural bond orbital, molecular electrostatic surface potential and independent gradient models to validate these conclusions.
Collapse
Affiliation(s)
- Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| | - Helder M Marques
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
5
|
Peluso P, Mamane V. Stereoselective Processes Based on σ-Hole Interactions. Molecules 2022; 27:molecules27144625. [PMID: 35889497 PMCID: PMC9323542 DOI: 10.3390/molecules27144625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The σ-hole interaction represents a noncovalent interaction between atoms with σ-hole(s) on their surface (such as halogens and chalcogens) and negative sites. Over the last decade, significant developments have emerged in applications where the σ-hole interaction was demonstrated to play a key role in the control over chirality. The aim of this review is to give a comprehensive overview of the current advancements in the use of σ-hole interactions in stereoselective processes, such as formation of chiral supramolecular assemblies, separation of enantiomers, enantioselective complexation and asymmetric catalysis.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy
- Correspondence: (P.P.); (V.M.)
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 Rue Blaise Pascal, 67008 Strasbourg, France
- Correspondence: (P.P.); (V.M.)
| |
Collapse
|
6
|
Unravelling functions of halogen substituents in the enantioseparation of halogenated planar chiral ferrocenes on polysaccharide-based chiral stationary phases: experimental and electrostatic potential analyses. J Chromatogr A 2022; 1673:463097. [DOI: 10.1016/j.chroma.2022.463097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/31/2022]
|
7
|
Abstract
The list of σ-hole bonds is long and growing, encompassing both H-bonds and its closely related halogen, chalcogen, etc., sisters. These bonds rely on the asymmetric distribution of electron density, whose depletion along the extension of a covalent bond leaves a positive region of electrostatic potential from which these bonds derive their name. However, the density distributions of other molecules contain analogous positive regions that lie out of the molecular plane known as π-holes, which are likewise capable of engaging in noncovalent bonds. Quantum calculations are applied to study such π-hole bonds that involve linear molecules, whose positive region is a circular belt surrounding the molecule, rather than the more restricted area of a σ-hole. These bonds are examined in terms of their most fundamental elements arising from the spatial dispositions of their relevant molecular orbitals and the π-holes in both the total electron density and the electrostatic potential to which they lead. Systems examined comprise tetrel, chalcogen, aerogen, and triel bonds, as well as those involving group II elements, with atoms drawn from various rows of the Periodic Table. The π-hole bonds established by linear molecules tend to be weaker than those of comparable planar systems.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
8
|
Scheiner S. Dissection of the Origin of π-Holes and the Noncovalent Bonds in Which They Engage. J Phys Chem A 2021; 125:6514-6528. [PMID: 34310147 DOI: 10.1021/acs.jpca.1c05431] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accompanying the rapidly growing list of σ-hole bonds has come the acknowledgment of parallel sorts of noncovalent bonds which owe their stability in large part to a deficiency of electron density in the area above the molecular plane, known as a π-hole. The origins of these π-holes are probed for a wide series of molecules, comprising halogen, chalcogen, pnicogen, tetrel, aerogen, and spodium bonds. Much like in the case of their σ-hole counterparts, formation of the internal covalent π-bond in the Lewis acid molecule pulls density toward the bond midpoint and away from its extremities. This depletion of density above the central atom is amplified by an electron-withdrawing substituent. At the same time, the amplitude of the π*-orbital is enhanced in the region of the density-depleted π-hole, facilitating a better overlap with the nucleophile's lone pair orbital and a stabilizing n → π* charge transfer. The presence of lone pairs on the central atom acts to attenuate the π-hole and shift its position somewhat, resulting in an overall weakening of the π-hole bond. There is a tendency for π-hole bonds to include a higher fraction of induction energy than σ-bonds with proportionately smaller electrostatic and dispersion components, but this distinction is less a product of the σ- or π-character and more a function of the overall bond strength.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
9
|
Peluso P, Dessì A, Dallocchio R, Sechi B, Gatti C, Chankvetadze B, Mamane V, Weiss R, Pale P, Aubert E, Cossu S. Enantioseparation of 5,5'-Dibromo-2,2'-Dichloro-3-Selanyl-4,4'-Bipyridines on Polysaccharide-Based Chiral Stationary Phases: Exploring Chalcogen Bonds in Liquid-Phase Chromatography. Molecules 2021; 26:molecules26010221. [PMID: 33406753 PMCID: PMC7794968 DOI: 10.3390/molecules26010221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
The chalcogen bond (ChB) is a noncovalent interaction based on electrophilic features of regions of electron charge density depletion (σ-holes) located on bound atoms of group VI. The σ-holes of sulfur and heavy chalcogen atoms (Se, Te) (donors) can interact through their positive electrostatic potential (V) with nucleophilic partners such as lone pairs, π-clouds, and anions (acceptors). In the last few years, promising applications of ChBs in catalysis, crystal engineering, molecular biology, and supramolecular chemistry have been reported. Recently, we explored the high-performance liquid chromatography (HPLC) enantioseparation of fluorinated 3-arylthio-4,4′-bipyridines containing sulfur atoms as ChB donors. Following this study, herein we describe the comparative enantioseparation of three 5,5′-dibromo-2,2′-dichloro-3-selanyl-4,4′-bipyridines on polysaccharide-based chiral stationary phases (CSPs) aiming to understand function and potentialities of selenium σ-holes in the enantiodiscrimination process. The impact of the chalcogen substituent on enantioseparation was explored by using sulfur and non-chalcogen derivatives as reference substances for comparison. Our investigation also focused on the function of the perfluorinated aromatic ring as a π-hole donor recognition site. Thermodynamic quantities associated with the enantioseparation were derived from van’t Hoff plots and local electron charge density of specific molecular regions of the interacting partners were inspected in terms of calculated V. On this basis, by correlating theoretical data and experimental results, the participation of ChBs and π-hole bonds in the enantiodiscrimination process was reasonably confirmed.
Collapse
Affiliation(s)
- Paola Peluso
- Institute of Biomolecular Chemistry ICB, CNR, Secondary Branch of Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy; (A.D.); (R.D.); (B.S.)
- Correspondence: (P.P.); (V.M.); Tel.: +39-079-2841218 (P.P.); +33-3-68851612 (V.M.)
| | - Alessandro Dessì
- Institute of Biomolecular Chemistry ICB, CNR, Secondary Branch of Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy; (A.D.); (R.D.); (B.S.)
| | - Roberto Dallocchio
- Institute of Biomolecular Chemistry ICB, CNR, Secondary Branch of Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy; (A.D.); (R.D.); (B.S.)
| | - Barbara Sechi
- Institute of Biomolecular Chemistry ICB, CNR, Secondary Branch of Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy; (A.D.); (R.D.); (B.S.)
| | - Carlo Gatti
- CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, sezione di via Golgi, via C. Golgi 19, 20133 Milano, Italy;
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia;
| | - Victor Mamane
- Strasbourg Institute of Chemistry, UMR CNRS 7177, Team LASYROC, 1 rue Blaise Pascal, University of Strasbourg, 67008 Strasbourg CEDEX, France; (R.W.); (P.P.)
- Correspondence: (P.P.); (V.M.); Tel.: +39-079-2841218 (P.P.); +33-3-68851612 (V.M.)
| | - Robin Weiss
- Strasbourg Institute of Chemistry, UMR CNRS 7177, Team LASYROC, 1 rue Blaise Pascal, University of Strasbourg, 67008 Strasbourg CEDEX, France; (R.W.); (P.P.)
| | - Patrick Pale
- Strasbourg Institute of Chemistry, UMR CNRS 7177, Team LASYROC, 1 rue Blaise Pascal, University of Strasbourg, 67008 Strasbourg CEDEX, France; (R.W.); (P.P.)
| | - Emmanuel Aubert
- Crystallography, Magnetic Resonance and Modelling (CRM2), UMR CNRS 7036, University of Lorraine, Bd des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France;
| | - Sergio Cossu
- Department of Molecular Sciences and Nanosystems DSMN, Venice Ca’ Foscari University, Via Torino 155, 30172 Mestre Venezia, Italy;
| |
Collapse
|