Montoya-Arroyo A, Wagner T, Sus N, Müller M, Kröpfl A, Vetter W, Frank J. Cytotoxicity, cellular uptake, and metabolism to short-chain metabolites of 11'-α-tocomonoenol is similar to RRR-α-tocopherol in HepG2 cells.
Free Radic Biol Med 2021;
177:24-30. [PMID:
34666150 DOI:
10.1016/j.freeradbiomed.2021.10.018]
[Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Contrary to the major vitamin E congener α-tocopherol, which carries a saturated sidechain, and α-tocotrienol, with a threefold unsaturated sidechain, little is known about the intracellular fate of α-tocomonoenol, a minor vitamin E derivative with a single double bond in C11'-position of the sidechain. We hypothesized that, due to structural similarities, the uptake and metabolism of α-tocomonoenol will resemble that of α-tocopherol. Cytotoxicity, cellular uptake of α-tocomonoenol, α-tocopherol and α-tocotrienol and conversion into the short-chain metabolites αCEHC and αCMBHC were studied in HepG2 cells. α-Tocomonoenol did not show significant effects on cell viability and its uptake was similar to that observed for α-tocopherol and significantly lower than for α-tocotrienol. α-Tocomonoenol was mainly metabolized to αCMBHC in liver cells, but to a lower extent than α-tocotrienol, while α-tocopherol was not metabolized in quantifiable amounts at all. In summary, the similarities in the cytotoxicity, uptake and metabolism of α-tocomonoenol and α-tocopherol suggest that this minor vitamin E congener deserves more attention in future research with regard to its potential vitamin E activity.
Collapse