1
|
Matore BW, Murmu A, Banjare P, Vishvakarma NK, Roy PP, Singh J. Discovery of newer 1,3,4-Oxadiazole clubbed Isoindoline-1,3-dione derivatives as potential anticancer agents: Design, machine learning, synthesis, molecular docking, ADMET, DFT and MD simulation. Comput Biol Chem 2025; 118:108492. [PMID: 40306097 DOI: 10.1016/j.compbiolchem.2025.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Cancer remains to be the second leading cause of death, since the available drugs and therapies may get failure due to the early-stage drug resistance, metastasis, poor pharmacokinetics, and toxic effects. This gap can be fulfilled by designing potential anticancer agent with the Phthalimide as a prime scaffold. The robust and reliable pharmacophore model was used for the designing of newer Phthalimide derivatives. Additionally, we clubbed 1,3,4-Oxadiazole with Phthalimide to fulfil these features. The predicted IC50 for all the designed compounds are in µM range and DFT study also confirmed the reactive nature of these molecules. The designed compounds were synthesized and characterized by FT-IR, 1H NMR, 13C NMR and Mass spectroscopy. The in-vitro anticancer evaluation was carried out by performing MTT assay on MCF-7 and HCT-116 cancer cell lines. All compounds showed moderate to potent anticancer activity. The compound B19 was found to be the most potent against both the MCF-7 and HCT-116 with IC50 of 3.468 and 4.508 µM respectively. All the compounds showed good docking score in terms of binding affinity, lib dock score, CDOCKER interaction and binding free energy. MD Simulation study reviled good stability, compactness and rigidity of potent compound throughout the 100 ns run. ADMET results supports the good pharmacokinetics and lower toxicity. In conclusion, we suggest the compound B19 is potential drug-like candidate can be utilized in anticancer treatment on further confirmations. This study is widely useful for the medicinal chemists and scientific community.
Collapse
Affiliation(s)
- Balaji Wamanrao Matore
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, India
| | - Anjali Murmu
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, India
| | - Purusottam Banjare
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, India
| | - Naveen Kumar Vishvakarma
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, India
| | - Partha Pratim Roy
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, India
| | - Jagadish Singh
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, India.
| |
Collapse
|
2
|
Li J, Huang D, Liao W, Wang Y, Liu Y, Luan P. Advanced Nanopharmaceutical Intervention for the Reduction of Inflammatory Responses and the Enhancement of Behavioral Outcomes in APP/PS1 Transgenic Mouse Models. Pharmaceutics 2025; 17:177. [PMID: 40006544 PMCID: PMC11859494 DOI: 10.3390/pharmaceutics17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The excessive accumulation of Aβ plays a critical role in the development of Alzheimer's disease. However, the therapeutic potential of drugs like curcumin is often limited by low biocompatibility and BBB permeability. In this study, we developed a nanomaterial, BP-PEG-Tar@Cur, which was designed to enhance the biocompatibility of (curcumin) Cur, target Aβ, and augment BBB permeability through near-infrared (NIR) photothermal effects. Methods: Soluble Aβ, ThT fluorescence, and Aβ depolymerization fluorescence experiments were conducted to evaluate the ability of BP-PEG-Tar@Cur to inhibit Aβ aggregation and dissociate Aβ fibrils. Cell uptake assays were performed to confirm the targeting ability of BP-PEG-Tar@Cur towards Aβ. In vitro mitochondrial ROS clearance and in vivo detection of inflammatory factors were used to assess the anti-inflammatory and antioxidant properties of the nanodrug. Water maze behavioral experiments were conducted to evaluate the effect of BP-PEG-Tar@Cur on spatial memory, learning ability, and behavioral disorders in AD mice. Results: The nanodrug effectively inhibited Aβ aggregation and dissociated Aβ fibrils in vitro. BP-PEG-Tar@Cur demonstrated efficiency in curbing ROS overproduction in mitochondria and dampening the activation of microglia and astrocytes triggered by Aβ aggregation. Water maze behavioral experiments revealed that BP-PEG-Tar@Cur enhanced spatial memory, learning ability, and alleviated behavioral disorders in AD mice. Conclusions: Collectively, these findings demonstrate that BP-PEG-Tar@Cur has the potential to be an effective targeted drug for inhibiting Aβ aggregation and improving cognitive impairment in AD mice.
Collapse
Affiliation(s)
- Jun Li
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Dongqing Huang
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wanchen Liao
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yulin Wang
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510260, China
| | - Yibiao Liu
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Ping Luan
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Kostoudi S, Iatridis N, Hadjipavlou-Litina D, Pontiki E, Pampalakis G. Chemical, In Cellulo, and In Silico Characterization of the Aminocholine Analogs of VG. Int J Mol Sci 2024; 25:12656. [PMID: 39684368 DOI: 10.3390/ijms252312656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
V-type nerve agents are exceedingly toxic chemical warfare agents that irreversibly inhibit acetylcholinesterase (AChE), leading to acetylcholine accumulation in synapses and the disruption of neurotransmission. VG or O.O-diethyl S-(diethylamino)ethyl phosphorothiolate was the first compound of this class that was synthesized. The selenocholines (-Se-), cholines (-O-), and methylene-cholines (-CH2-) analogs of V-agents have been synthesized and their anti-AChE activities reported. Nevertheless, the aminocholine derivatives have not been pursued. Here, we have designed and synthesized a series of phosphorylated aminocholines analogs of VG that were characterized by NMR spectroscopy (H1, C13, P31, and TOCSY). Their pharmacological properties were analyzed in silico, while their toxicological properties were in vitro investigated using the SH-SY5Y cellular model. Despite the drug likeness of the new compounds, these fail to inhibit AChE in vitro and in cellulo. This may be partially explained by the fact that aminocholine is not a good leaving group compared to thiocholine. Remarkably, one of the compounds (P4) was found to even increase the activity of AChE. These compounds may serve as new nerve agent mimics that are safer alternatives for testing countermeasures. Importantly, P4 may act as a lead compound for developing a new class of alternative nerve agent pretreatments that are safer from pyridostigmine.
Collapse
Affiliation(s)
- Stavroula Kostoudi
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Iatridis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitra Hadjipavlou-Litina
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Pontiki
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Pampalakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Fotopoulos I, Pontiki E, Hadjipavlou-Litina D. Pharmacochemical Study of Multitarget Amino Acids' Hybrids: Design, Synthesis, In vitro, and In silico Studies. Med Chem 2024; 20:709-720. [PMID: 38347768 PMCID: PMC11348465 DOI: 10.2174/0115734064279653240125081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Neuro-inflammation is a complex phenomenon resulting in several disorders. ALOX-5, COX-2, pro-inflammatory enzymes, and amino acid neurotransmitters are tightly correlated to neuro-inflammatory pathologies. Developing drugs that interfere with these targets will offer treatment for various diseases. OBJECTIVE Herein, we extend our previous research by synthesizing a series of multitarget hybrids of cinnamic acids with amino acids recognized as neurotransmitters. METHODS The synthesis was based on an In silico study of a library of cinnamic amide hybrids with glycine, γ- aminobutyric, and L - glutamic acids. Drug-likeness and ADMET properties were subjected to In silico analysis. Cinnamic acids were derived from the corresponding aldehydes by Knoevenagel condensation. The synthesis of the amides followed a two-step reaction with 1- hydroxybenzotriazole monohydrate and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride in dry dichloromethane and the corresponding amino acid ester hydrochloride salt in the presence of N,N,-diisopropyl-Nethylamine. RESULTS The structure of the synthesized compounds was confirmed spectrophotometrically. The new compounds, such as lipoxygenase, cyclooxygenase-2, lipid peroxidation inhibitors, and antiinflammatories, were tested in vitro. The compounds exhibited LOX inhibition with IC50 values in the low μM region). CONCLUSION Compounds 18a, 23b, and 11c are strong lipid peroxidation inhibitors (99%, 78%, and 92%). Compound 28c inhibits SLOX-1 with IC50 =8.5 μM whereas 11a and 22a highly inhibit COX-2 (IC50 6 and 5 μM Hybrids 14c and 17c inhibit both enzymes. Compound 29c showed the highest anti-inflammatory activity (75%). The In silico ADMET properties of 14c and 11a support their drug-likeness.
Collapse
Affiliation(s)
- Ioannis Fotopoulos
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
5
|
Olender D, Sowa-Kasprzak K, Pawełczyk A, Skóra B, Zaprutko L, Szychowski KA. Curcuminoid Chalcones: Synthesis and Biological Activity against the Human Colon Carcinoma (Caco-2) Cell Line. Curr Med Chem 2024; 31:5397-5416. [PMID: 37779412 DOI: 10.2174/0109298673257972230919055832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND There are many current scientific reports on the synthesis of various derivatives modelled on the structure of known small-molecular and natural bioactive compounds. Curcuminoid chalcones are an innovative class of compounds with significant therapeutic potential against various diseases and they perfectly fit into the current trends in the search for new biologically active substances. AIM The aim of this study was to design and synthesise a series of curcuminoid chalcones. OBJECTIVE The objective of this scientific paper was to synthesise twelve curcuminoid chalcones and confirm their structures using spectral methods. Additionally, the biological activity of three of the synthesised compounds was evaluated using various assays, and their anticancer properties and toxicity were studied. METHODS The proposed derivatives were obtained via the Claisen-Schmidt reaction of selected acetophenones and aldehydes in various conditions using both classical methods: the solutions and solvent-free microwave (MW) or ultrasound (US) variants. The most optimal synthetic method for the selected curcuminoid chalcones was the classical Claisen-Schmidt condensation in an alkaline (NaOH) medium. Spectral methods were used to confirm the structures of the compounds. The resazurin reduction assay, caspase-3 activity assay, and RT-qPCR method were performed, followed by measurements of the intracellular reactive oxygen species (ROS) level and the lactate dehydrogenase (LDH) release level. RESULTS Twelve designed curcuminoid chalcones were successfully synthesized and structurally confirmed by NMR, MS, and IR spectroscopy. Examination of the anticancer activity was carried out for the three most interesting chalcone products. CONCLUSION The results suggested that compound 3a increased the metabolism and/or proliferation of the human colon carcinoma (Caco-2) cell line, while compounds 3b and 3f showed significant toxicity against the Caco-2 cell line. Overall, the preliminary results suggested that compound 3b exhibited the most favourable anticancer activity.
Collapse
Affiliation(s)
- Dorota Olender
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Katarzyna Sowa-Kasprzak
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Anna Pawełczyk
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszów, Poland
| |
Collapse
|
6
|
Ethyl (E)-(3-(4-((4-Bromobenzyl)Oxy)Phenyl)Acryloyl)Glycinate. MOLBANK 2022. [DOI: 10.3390/m1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In an attempt to develop new potent anti-inflammatory agents, a cinnamic -amino acid hybrid molecule was synthesized and in silico drug-likeness, in vitro COX-2 inhibition, and pharmacokinetic properties were studied. The results showed high cyclooxygenase inhibitory activity (IC50 = 6 µM) and favorable pharmacokinetic properties, being orally bioavailable according to Lipinski’s rule of five, making this compound a possible lead to design and develop potent COX inhibitors. The new compound, in comparison with its cinnamic acid precursor (E)-(3-(4-((4-bromobenzyl)oxy)phenyl)acrylic acid, showed improved biological activities. Compound ethyl (E)-(3-(4-((4-bromobenzyl)oxy)phenyl)acryloyl)glycinate can be used as a lead for the synthesis of more effective hybrids.
Collapse
|
7
|
İmamoğlu R, Koç E, Kısa D. Polyphenolic compounds: Synthesis, assessment of antimicrobial effect and enzymes inhibition against important medicinal enzymes with computational details. Bioorg Med Chem Lett 2022; 65:128722. [PMID: 35395370 DOI: 10.1016/j.bmcl.2022.128722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022]
Abstract
Phenolic compounds mainly benefit human health and have many biological activities. Their activities are related to their structure, which allows them to interact with enzymes. The inhibition potencies of synthesized polyphenolic compounds (3a and 3b) were investigated on cholinesterases, α‑Gly, and tyrosinase activities. The structures of 3a and 3b were determined based on spectral data (NMR, UV-vis, XRD pattern, SEM, and EDX). The compounds have effective inhibitory potential with IC50 value between 2.25 ± 0.35-5.66 ± 0.75 µM and Ki values 2.95 ± 0.37-14.86 ± 4.99 µM for AChE, BChE, and tyrosinase. It was determined that the synthesized compounds have biological activities by the MIC and cytotoxicity tests, and they have IC50 values of 16.15 µg/mL and 12.16 µg/mL for the PC-3 cell line, respectively. According to the calculated molecular docking results, these compounds showed the highest binding energy against AChE and tyrosinase enzymes (-11.3 and -10.4 kcal/mol, respectively). The compounds have synthetic accessibility scores of 2.75 and 4.55 based on the drug-likeness properties.
Collapse
Affiliation(s)
- Rizvan İmamoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Esra Koç
- Department of Chemistry, Tokat Gaziosmanpaşa University, 60250 Tokat, Turkey
| | - Dursun Kısa
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey.
| |
Collapse
|
8
|
Singh H, Agrawal DK. Recent advances in the development of active hybrid molecules in the treatment of cardiovascular diseases. Bioorg Med Chem 2022; 62:116706. [PMID: 35364524 PMCID: PMC9018605 DOI: 10.1016/j.bmc.2022.116706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
Abstract
Multifactorial nature of the underlying pathophysiology of chronic disorders hinders in the effective treatment and management of many complex diseases. The conventional targeted therapies have limited applications due to highly complicated disease etiology. Cardiovascular diseases (CVDs) are the group of disorders of the heart and blood vessels. Currently, there is limited knowledge on the underlying cellular and molecular mechanisms of many of the CVDs due to their complex pathophysiology and co-morbidities. Their management with conventional medications results in failure due to adverse drug reactions and clinical specificity of solo-targeting drug therapy. Therefore, it is critical to introduce an alternative strategy to treat multi-factorial diseases. In the past few years, discovery and use of multi-targeted drug therapy with hybrid molecules have shown promising results with minimal side effects, and thus considered a most effective approach. In this review article, prominent hybrid molecules combining with different active moieties are reported to synergistically and simultaneously block different pathways involved in CVDs. Here, we provide a critical evaluation and discussion on their pharmacology with mechanistic insights and the structure activity relationship. The timely information provided in this article reveals the recent trends of molecular hybridization to the scientific community interested in CVDs and help them in designing the next generation of multi-targeting drug therapeutics.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
9
|
An Investigation into the Interaction between Double Hydroxide-Based Antioxidant Benzophenone Derivatives and Cyclooxygenase 2. Molecules 2021; 26:molecules26216622. [PMID: 34771031 PMCID: PMC8587043 DOI: 10.3390/molecules26216622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenases 2 (COX2) is a therapeutic target for many inflammation and oxidative stress associated diseases. A high-throughput technique, biolayer interferometry, was performed to primarily screen the potential COX2 binding activities of twelve newly synthesized double hydroxide-based benzophenone derivatives. Binding confirmation was achieved by molecular docking and multi-spectroscopy studies. Such a combined method provided a comprehensive understanding of binding mechanism and conformational changes. Compounds DB2, SC2 and YB2 showed effective COX2 binding activity and underlined the benefits of three phenolic hydroxyl groups adjacent to each other on the B ring. The twelve tested derivatives were further evaluated for antioxidant activity, wherein compound SC2 showed the highest activity. Its concentration for the 50% of maximal effect (EC50) value was approximately 1000 times greater than that of the positive controls. SC2 treatment effectively improved biochemical indicators caused by oxidative stress. Overall, compound SC2 could serve as a promising candidate for further development of a new potent COX2 inhibitor.
Collapse
|
10
|
Lv Z, Shen J, Gao X, Ruan Y, Ling J, Sun R, Dai J, Fan H, Cheng X, Cao P. Herbal formula Huangqi Guizhi Wuwu decoction attenuates paclitaxel-related neurotoxicity via inhibition of inflammation and oxidative stress. Chin Med 2021; 16:76. [PMID: 34376246 PMCID: PMC8353759 DOI: 10.1186/s13020-021-00488-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paclitaxel-induced peripheral neuropathy (PIPN) is a challenging clinical problem during chemotherapy. Our previous work found that herbal formula Huangqi Guizhi Wuwu decoction (HGWD) could reduce oxaliplatin-induced neurotoxicity. However, its effect on PIPN remains unknown. In this study, we aim to investigate the therapeutic effect and the underlying mechanisms of HGWD against PIPN with pharmacological experiment and network pharmacology. METHODS Male Wistar rats were used to establish an animal model of PIPN and treated with different doses of HGWD for 3 weeks. Mechanical allodynia, thermal hyperalgesia and body weight were measured to evaluate the therapeutic effect of HGWD on PIPN rats. On the day of the sacrifice, blood, DRGs, sciatic nerve, and hind-paw intra-plantar skins were collected to assess neuroprotective effect of HGWD on PIPN. Next, network pharmacology was performed to decipher the potential active components and molecular mechanisms of HGWD, as were further verified by western blotting analyses in PIPN rats. Finally, the effect of HGWD on the chemotherapeutic activity of paclitaxel was evaluated in vitro and in vivo. RESULTS In rats with PIPN, HGWD reversed mechanical allodynia, thermal hyperalgesia, and ameliorated neuronal damage. Moreover, HGWD significantly increased the level of nerve growth factor, dramatically reduced IL-1β, IL-6, TNF-α levels and oxidative stress. Network pharmacology analysis revealed 30 active ingredients in HGWD and 158 candidate targets. Integrated pathway analysis identified PI3K/Akt and toll-like receptor as two main pathways responsible for the neuroprotective effect of HGWD. Further experimental validation demonstrated that HGWD expectedly inhibited the protein expression of TLR4, MyD88, IKKα, and p-NF-κB, and promoted PI3K, p-Akt, Nrf2, and HO-1 level in dorsal root ganglia. Last but not least, HGWD did not interfere with the antitumor activity of paclitaxel both in in vitro and in vivo models. CONCLUSION These combined data showed that HGWD could inhibit paclitaxel-evoked inflammatory and oxidative responses in peripheral nervous system viaTLR4/NF-κB and PI3K/Akt-Nrf2 pathways involvement. The neuroprotective property of HGWD on PIPN provides fundamental support to the potential application of HGWD for counteracting the side effects of paclitaxel during chemotherapy.
Collapse
Affiliation(s)
- Zhangming Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jiayun Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xuejiao Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yonglan Ruan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jinying Ling
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Rongwei Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jingya Dai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Haizhen Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xiaolan Cheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China. .,School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China. .,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
11
|
Ege D. Action Mechanisms of Curcumin in Alzheimer's Disease and Its Brain Targeted Delivery. MATERIALS 2021; 14:ma14123332. [PMID: 34208692 PMCID: PMC8234049 DOI: 10.3390/ma14123332] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022]
Abstract
AD is a chronic neurodegenerative disease. Many different signaling pathways, such as Wnt/β-catenin, Notch, ROS/JNK, and PI3K/Akt/mTOR are involved in Alzheimer’s disease and crosstalk between themselves. A promising treatment involves the uses of flavonoids, and one of the most promising is curcumin; however, because it has difficulty permeating the blood–brain barrier (BBB), it must be encapsulated by a drug carrier. Some of the most frequently studied are lipid nanocarriers, liposomes, micelles and PLGA. These carriers are further conjugated with brain-targeting agents such as lactoferrin and transferrin. In this review paper, curcumin and its therapeutic effects, which have been examined in vivo, are analyzed and then the delivery systems to the brain are addressed. Overall, the analysis of the literature revealed great potential for curcumin in treating AD and indicated the challenges that require further research.
Collapse
Affiliation(s)
- Duygu Ege
- Biomedical Engineering, Boğaziçi University, Rasathane Cd, Kandilli Campus, Istanbul 34684, Turkey
| |
Collapse
|
12
|
Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L. Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. NANOMATERIALS 2020; 11:nano11010002. [PMID: 33374979 PMCID: PMC7822042 DOI: 10.3390/nano11010002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Nutraceuticals represent complementary or alternative beneficial products to the expensive and high-tech therapeutic tools in modern medicine. Nowadays, their medical or health benefits in preventing or treating different types of diseases is widely accepted, due to fewer side effects than synthetic drugs, improved bioavailability and long half-life. Among herbal and natural compounds, curcumin is a very attractive herbal supplement considering its multipurpose properties. The potential effects of curcumin on glia cells and its therapeutic and protective properties in central nervous system (CNS)-related disorders is relevant. However, curcumin is unstable and easily degraded or metabolized into other forms posing limits to its clinical development. This is particularly important in brain pathologies determined blood brain barrier (BBB) obstacle. To enhance the stability and bioavailability of curcumin, many studies focused on the design and development of curcumin nanodelivery systems (nanoparticles, micelles, dendrimers, and diverse nanocarriers). These nanoconstructs can increase curcumin stability, solubility, in vivo uptake, bioactivity and safety. Recently, several studies have reported on a curcumin exosome-based delivery system, showing great therapeutical potential. The present work aims to review the current available data in improving bioactivity of curcumin in treatment or prevention of neurological disorders.
Collapse
Affiliation(s)
- Elisa Panzarini
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefania Mariano
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefano Tacconi
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Elisabetta Carata
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Ada Maria Tata
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciana Dini
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, Campus Ecotekne, University of Salento, 73100 Lecce, Italy
- Correspondence:
| |
Collapse
|