1
|
Sowa-Borowiec P, Czernicka M, Jarecki W, Dżugan M. Sweet Clover ( Melilotus spp.) as a Source of Biologically Active Compounds. Molecules 2025; 30:526. [PMID: 39942630 PMCID: PMC11820964 DOI: 10.3390/molecules30030526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Sweet clover, particularly white sweet clover (Melilotus albus), is an underexplored plant that has gained attention in recent years. This study compared the bioactive compounds content in the flowers, leaves, and stems of Melilotus albus Medic. to the well-known health-promoting Melilotus officinalis (L.) Lam. Both fresh and dried plant materials were analysed, with chromatographic assessments preceded by the optimisation of the extraction method (using 50% aqueous ethanol-water and the plant sample ground in a mortar, followed by 30 min of ultrasound-assisted extraction). Flower and leaf extracts were also evaluated for their total phenolic content (TPC) and antioxidant activity using FRAP and DPPH· assays. Both plant species were rich in phenolic compounds, including coumarins, phenolic acids, and flavonoids. HPLC-PDA analysis revealed similar profiles for both species, with quantitative differences in individual compound fractions. The highest coumarin content was found in the fresh flowers, followed by the leaves and stems. No significant species-specific differences in the coumarin content were observed. However, the flowers of M. albus were a richer source of flavonoids, with the highest hyperoside content. The flavonoid profile in the leaf extracts was similar to that of the flowers, but the content was about four times lower in the leaves and even lower than in the stems. Interestingly, the leaf extracts exhibited higher antioxidant activity than the flower extracts. The presented findings suggest that white sweet clover is an equally valuable source of health-promoting compounds as yellow sweet clover.
Collapse
Affiliation(s)
- Patrycja Sowa-Borowiec
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland
| | - Maria Czernicka
- Department of Bioenergetics, Food Analysis and Microbiology, University of Rzeszow, 35-601 Rzeszow, Poland;
| | - Wacław Jarecki
- Department of Crop Production, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, University of Rzeszow, Ćwiklińskiej 1a, 35-601 Rzeszow, Poland
| |
Collapse
|
2
|
Czernicka M, Sowa-Borowiec P, Puchalski C, Czerniakowski ZW. Content of Bioactive Compounds in Highbush Blueberry Vaccinium corymbosum L. Leaves as a Potential Raw Material for Food Technology or Pharmaceutical Industry. Foods 2024; 13:246. [PMID: 38254547 PMCID: PMC10814797 DOI: 10.3390/foods13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
This study was performed to investigate the content of selected phenolic compounds, antioxidant activity and the levels of arbutin and hydroquinone in 25 varieties of highbush blueberry (Vaccinium corymbosum) leaf samples. An analysis of the bioactive components was performed using the HPLC technique and the antioxidant activity was determined via spectrophotometric methods. The content of chlorogenic acid in the analysed leaf extracts ranged from 52.76 mg/g (Spartan variety) to 32.37 mg/g (Nelson variety) and was present in the highest concentration among all the analysed phenolic acids. Particularly large levels of isoquercetin were found in the Aurora, Ivanhoe and Toro varieties (28.40 mg/g, 26.24 mg/g and 21.57 mg/g, respectively). An exceptionally high rutin content (p < 0.05) was found in the Ivanhoe variety (27.19 mg/g) as compared to the other varieties, where it ranged from 2.06 mg/g (Earliblue and Patriot varieties) to 10.55 mg/g (Bluejay variety). The Patriot variety was determined to possess the highest antioxidative activity using the FRAP method (1086.15 μmol Trolox/g d.w.) and based on its DPPH radical scavenging activity (1124.17 μmol Trolox/g d.w.). The total phenolic content (TPC) determined via spectrophotometry ranged from 48.11 mg GAE/g d.w. (Elizabeth variety) to 177.31 GAE/g d.w. (Patriot variety). The arbutin content in the leaves of all tested varieties exceeded 2%, so it can be concluded that they constitute a stable source of arbutin. Three varieties (Bonus, Chanticleer and Herbert) can be considered a potential alternative to bearberry and lingonberry leaves. The hydroquinone content in the analysed extracts was determined to be at a lower level. V. corymbosum leaves can be considered an interesting herbal material for use in traditional herbal medicinal products but not directly for food products and dietary supplements.
Collapse
Affiliation(s)
- Maria Czernicka
- Department of Bioenergetics, Food Analysis and Microbiology, University of Rzeszow, 35-601 Rzeszow, Poland;
| | - Patrycja Sowa-Borowiec
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland;
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, University of Rzeszow, 35-601 Rzeszow, Poland;
| | | |
Collapse
|
3
|
Zhao X, Du B, Wan M, Li J, Qin S, Nian F, Tang D. Analysis of the antioxidant activity of toons sinensis extract and their biological effects on broilers. Front Vet Sci 2024; 10:1337291. [PMID: 38260193 PMCID: PMC10800727 DOI: 10.3389/fvets.2023.1337291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Plant extracts are rich in a variety of nutrients and contain a large number of bioactive compounds, and compared with traditional feed additives, they have advantages such as wide sources, natural safety and rich nutrition. This study employed in vitro antioxidant and animal experiments to comprehensively evaluate the use of Toona sinensis extract (TSE) in broiler production. 508 1-day-old Cobb 500 broilers were randomly assigned to the 7 experimental groups with 6 replications and 12 birds/replicate. Two groups received Vitamin C (VC) 300 g/t and Vitamin E 500 g/t, and five dose groups of TSE received 0, 300, 600, 900, and 1,200 g/t of TSE in their feed. The study spanned 42 days, with a starter phase (1-21 days) and a finisher phase (22-42 days). The results showed that compared to ascorbic acid, TSE had the scavenging ability of 2,2-Diphenyl-1-picrylhydrazyl and hydroxyl radical, with IC50 values of 0.6658 mg/mL and 33.1298 mg/mL, respectively. Compared to TSE 0 group, broilers fed with 1,200 g/t TSE showed significant weight gain during the starter phase and increased the feed-to-weight gain ratio during both the starter and finisher phases. Additionally, broilers receiving 1,200 g/t TSE had enhanced dry matter and organic matter utilization. Concerning meat quality, broilers in the 1,200 g/t TSE group demonstrated increased cooked meat yield, and pH value, as well as higher antioxidant capacity (T-AOC), dismutase (SOD), and glutathione peroxidase (GSH-PX) in serum. In addition, there was no significant difference in ileal microflora due to TSE supplementation. In summary, this study confirms the positive impact of a dietary inclusion of 1,200 g/t TSE on broiler growth, meat quality, and serum antioxidants.
Collapse
Affiliation(s)
- Xiangmin Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Baolong Du
- Yizhou District Animal Disease Prevention and Control Center, Hami, China
| | - Minyan Wan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinlu Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Shakoori Z, Salaseh E, Mehrabian AR, Tehrani DM, Dardashti NF, Salmanpour F. The amount of antioxidants in honey has a strong relationship with the plants selected by honey bees. Sci Rep 2024; 14:351. [PMID: 38172229 PMCID: PMC10764931 DOI: 10.1038/s41598-023-51099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024] Open
Abstract
As one of the main sources of natural antioxidants, flowering plants play a role in the prevention and treatment of many diseases directly and indirectly. Honey is considered as an important nutrient in the supply of natural antioxidants, the amount of which is directly dependent on the plant origin and geographical location of the bee feeding place. The existence of valuable communities of native and endemic plant species has turned Alborz, Zagros and Azerbaijan into the most important hubs of honey production in Iran. In this study, we collected samples of honey from more than 90 regions in Alborz, Zagros and Azerbaijan during the years 2020 to 2021. We evaluated the samples using melissopalynology method and measuring the amount of antioxidant activity. The rise of antioxidant activity in honey is dependent on the abundance of some plant families as well botanical origins. The abundance of plant families Rosaceae, Amaranthaceae, Fabaceae and Asteraceae showed a higher influence on the amount of antioxidants in honey than other plant families. Also, the abundance of plant families Rosaceae and Fabaceae increased with increasing altitude. In general, the amount of antioxidant activity of honey samples shows a different percentage under the influence of ecological and geographical changes.
Collapse
Affiliation(s)
- Zahra Shakoori
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Elham Salaseh
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ahmad Reza Mehrabian
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Dariush Minai Tehrani
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Niluofar Famil Dardashti
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Farid Salmanpour
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Teterovska R, Sile I, Paulausks A, Kovalcuka L, Koka R, Mauriņa B, Bandere D. The Antioxidant Activity of Wild-Growing Plants Containing Phenolic Compounds in Latvia. PLANTS (BASEL, SWITZERLAND) 2023; 12:4108. [PMID: 38140435 PMCID: PMC10748313 DOI: 10.3390/plants12244108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Ethnobotanical reports from Latvia show that Tanacetum vulgare, Calluna vulgaris, Quercus robur, Artemisa absinthium, and Artemisia vulgaris contain phenolic compounds that have antioxidant properties, which can be beneficial in the treatment and prophylaxis of many diseases. The aim of this study was to characterize the phenolic compounds and antioxidant properties of these plants. Plant extracts were prepared using ethanol or acetone and then freeze-dried. Their total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC) were determined and characterized by HPLC. Their antioxidant properties were determined using a DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay. C. vulgaris herb and T. vulgare leaf extracts contained the highest amounts of flavonoids, but the bark of Q. robur had mostly tannins and phenolic acids. A. absinthium and A. vulgaris had the lowest amounts of polyphenols. When compared using extraction solvents, all acetone extracts had more TPC, more TFC, and better antioxidant activity. All plants contained chlorogenic acid, which contributes to antioxidant properties. The analysed plant extracts could be used in future studies to develop medicinal products with antioxidant properties.
Collapse
Affiliation(s)
- Renāte Teterovska
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia;
- Department of Pharmaceuticals, Red Cross Medical College of Riga Stradiņš University, LV-1009 Riga, Latvia
| | - Inga Sile
- Department of Applied Pharmacy, Riga Stradinš University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (I.S.); (B.M.)
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, LV-1006 Riga, Latvia
| | - Artūrs Paulausks
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
| | - Liga Kovalcuka
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | - Rudīte Koka
- Department of Biology and Microbiology, Riga Stradinš University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
| | - Baiba Mauriņa
- Department of Applied Pharmacy, Riga Stradinš University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (I.S.); (B.M.)
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| |
Collapse
|
6
|
Karcheva-Bahchevanska D, Benbassat N, Georgieva Y, Lechkova B, Ivanova S, Ivanov K, Todorova V, Peychev L, Peychev Z, Denev P. A Study of the Chemical Composition, Antioxidant Potential, and Acute Toxicity of Bulgarian Tanacetum vulgare L. Essential Oil. Molecules 2023; 28:6155. [PMID: 37630407 PMCID: PMC10457739 DOI: 10.3390/molecules28166155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Common tansy (Tanacetum vulgare L.) is a plant with medicinal properties that has traditionally been used in folk medicine for its anthelmintic, antispasmodic, and choleretic effects, for the treatment of diarrhea and digestive problems, and externally, as an insecticide in veterinary practices. In the current study, we investigated, for the first time, the chemical profile and antioxidant activity of essential oil from a wild population of T. vulgare L. growing in Bulgaria. Common tansy essential oil (EO), which is rich in bicyclic monoterpenes, was obtained using hydrodistillation and characterized by using gas chromatography-mass spectrometry (GC-MS). Thirty-seven compounds were identified in Bulgarian tansy EO. Among the major constituents were oxygenated monoterpenes, including compounds such as camphor (25.24%), trans-chrysantenyl acetate (18.35%), cis-verbenol (10.58%), thujone (6.06%), eucaliptol (5.99%), and α-campholenal (5.98%). The analysis results identified the essential oil from T. vulgare L. grown in the western Rhodope Mountains of Bulgaria as the camphor chemotype. Furthermore, its antioxidant activity was analyzed using the oxygen radical absorbance capacity (ORAC) method and was found to be 605.4 ± 49.3 µmol TE/mL. The essential oil was also tested for single-dose acute toxicity on Wistar rats and was found to be non-toxic by oral administration. The mean lethal dose by intraperitoneal administration was LD50 i.p. = 14.9 g/kg body weight. The results of the conducted study can serve as a basis for the evaluation and subsequent exploration of other pharmacotherapeutic effects of the essential oil obtained from the inflorescences of the Bulgarian species T. vulgare L.
Collapse
Affiliation(s)
- Diana Karcheva-Bahchevanska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yoana Georgieva
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Borislava Lechkova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Velislava Todorova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Lyudmil Peychev
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Zhivko Peychev
- Department of Medical Informatics, Biostatistics and E-Learning, Faculty of Public Health, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry—Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Šukele R, Lauberte L, Kovalcuka L, Logviss K, Bārzdiņa A, Brangule A, Horváth ZM, Bandere D. Chemical Profiling and Antioxidant Activity of Tanacetum vulgare L. Wild-Growing in Latvia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1968. [PMID: 37653885 PMCID: PMC10221018 DOI: 10.3390/plants12101968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 07/15/2023]
Abstract
The Tanacetum vulgare L. (Tansy) has several ethnobotanical uses, mostly related to the essential oil and sesquiterpene lactones, whereas information regarding other compounds is scarce. This research is designed to characterize the phenolic compounds (flavonoids, phenolic acids, and tannins) to analyze the thujone (which is toxic in high concentrations) content and to detect the antioxidant activity (DPPH assay) of extracts. The main highlights of our work provide a chemical profile of phenolic compounds of T. vulgare harvested from different regions of Latvia, as well as simultaneously support the ethnomedicinal uses for wild T. vulgare through the integration of phenolic compounds as one of the value constituents of leaves and flowers. The extraction yield was 18 to 20% for leaves and 8 to 16% for flowers. The total phenol content in the extracts of T. vulgare as well as their antioxidant activity was different between collection regions and the aerial parts ranging from 134 to 218 mg GAE/g and 32 to 182 mg L-1, respectively. A remarkable variation in the thujone (α + β) content (0.4% up to 6%) was detected in the extracts. T. vulgare leaf extracts were rich in tannins (up to 19%). According to the parameters detected, the extracts of T. vulgare could be considered promising for the development of new herbal products.
Collapse
Affiliation(s)
- Renāte Šukele
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Department of Pharmaceuticals, Red Cross Medical College of Riga Stradiņš University, LV-1009 Riga, Latvia
| | - Liga Lauberte
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Liga Kovalcuka
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Konstantins Logviss
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Ance Bārzdiņa
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Zoltán Márk Horváth
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| |
Collapse
|
8
|
Babich O, Larina V, Krol O, Ulrikh E, Sukhikh S, Gureev MA, Prosekov A, Ivanova S. In Vitro Study of Biological Activity of Tanacetum vulgare Extracts. Pharmaceutics 2023; 15:616. [PMID: 36839938 PMCID: PMC9961778 DOI: 10.3390/pharmaceutics15020616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Tanacetum vulgare is an herbaceous plant widely used in folk medicine. It is rich in phenolic acids and flavonoids, which have pharmacological and medicinal properties, such as anthelmintic, antispasmodic, tonic, antidiabetic, diuretic, and antihypertensive. This study aimed to confirm the presence of biologically active substances in Tanacetum vulgare and to determine the pharmacological spectrum of biological activity of Tanacetum vulgare extract components. When preparing Tanacetum vulgare extracts, the highest yield was observed when using the maceration method with a mixture of solvents methanol + trifluoroacetic acid (22.65 ± 0.68%). The biologically active substances in Tanacetum vulgare extract samples were determined using high-performance liquid chromatography. Biologically active substances such as luteolin-7-glucoside (550.80 mg/kg), chlorogenic acid (5945.40 mg/kg), and rosmarinic acid (661.31 mg/kg) were identified. Their structures were determined. The experiments have confirmed the antioxidant and antibacterial activities. Secondary metabolites of Tanacetum vulgare extracts have been found to have previously unknown biological activity types; experimental confirmation of their existence will advance phytochemical research and lead to the development of new drugs.
Collapse
Affiliation(s)
- Olga Babich
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| | - Viktoria Larina
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| | - Olesia Krol
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| | - Elena Ulrikh
- Institute of Agroengineering and Food System, Kaliningrad State Technical University, Soviet Avenue 1, Kaliningrad 236022, Russia
| | - Stanislav Sukhikh
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| | - Maxim A. Gureev
- Center of Bio- and Chemoinformatics, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8/2, Moscow 119991, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| |
Collapse
|
9
|
Gavanji S, Bakhtari A, Famurewa AC, Othman EM. Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review. Chem Biodivers 2023; 20:e202201098. [PMID: 36595710 DOI: 10.1002/cbdv.202201098] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Since time immemorial, human beings have sought natural medications for treatment of various diseases. Weighty evidence demonstrates the use of chemical methodologies for sensitive evaluation of cytotoxic potentials of herbal agents. However, due to the ubiquitous use of cytotoxicity methods, there is a need for providing updated guidance for the design and development of in vitro assessment. The aim of this review is to provide practical guidance on common cell-based assays for suitable assessment of cytotoxicity potential of herbal medicines and discussing their advantages and disadvantages Relevant articles in authentic databases, including PubMed, Web of Science, Science Direct, Scopus, Google Scholar and SID, from 1950 to 2022 were collected according to selection criteria of in vitro cytotoxicity assays and protocols. In addition, the link between cytotoxicity assay selection and different factors such as the drug solvent, concentration and exposure duration were discussed.
Collapse
Affiliation(s)
- Shahin Gavanji
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, 8415683111, Isfahan, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, 7133654361, Shiraz, Iran
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, PMB 1010, Ikwo, Ebonyi State, Nigeria.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka State, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.,Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Wuerzburg, Germany
| |
Collapse
|
10
|
Radisavljevic A, Stojanovic DB, Petrovic M, Radojevic V, Uskokovic P, Rajilic-Stojanovic M. Electrospun polycaprolactone nanofibers functionalized with Achillea millefolium extract yield biomaterial with antibacterial, antioxidant and improved mechanical properties. J Biomed Mater Res A 2022; 111:962-974. [PMID: 36571468 DOI: 10.1002/jbm.a.37481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/21/2022] [Accepted: 12/06/2022] [Indexed: 12/27/2022]
Abstract
In this study, polycaprolactone (PCL), as a biocompatible polymer was functionalized by addition of medicinal plant extract- Achillea millefolium L. (yarrow). Nanofiber mats were fabricated from PCL solutions containing dry yarrow extract in four concentrations (5%, 10%, 15%, and 20% relative to the weight of the polymer) by using blend electrospinning method. The nanofibers were characterized for their biological, mechanical and drug release behavior. In vitro release of yarrow polyphenols from the electrospun PCL nanofibers over a period of 5 days showed the release of up to 98% of the total loaded polyphenols. The released polyphenols retained its antioxidant activity, which was determined by DPPH assay. Electrospun PCL/yarrow nanofiber mats exhibited the antibacterial effect against Staphylococcus aureus, but had no effect on the growth of Pseudomonas aeruginosa. All PCL/yarrow nanofiber mats had improved mechanical properties compared to the neat PCL nanofibers, as evident by an increase in Young's modulus of elasticity (up to 5.7 times), the tensile strength (up to 5.5 times), and the strain at break (up to 1.45 times). Based on our results, yarrow-loaded PCL nanofiber mats appeared to be multi-functional biomaterials suitable for the production of catheter-coating materials, patches, or gauzes with antibacterial and antioxidant properties.
Collapse
Affiliation(s)
- Andjela Radisavljevic
- Faculty of Technology and Metallurgy, University of Belgrade, Innovation Centre, Belgrade, Serbia
| | - Dusica B Stojanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Milos Petrovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Radojevic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Petar Uskokovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
11
|
SDS-PAGE Protein and HPTLC Polyphenols Profiling as a Promising Tool for Authentication of Goldenrod Honey. Foods 2022; 11:foods11162390. [PMID: 36010388 PMCID: PMC9407375 DOI: 10.3390/foods11162390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to use protein and polyphenolic profiles as fingerprints of goldenrod honey and to apply them for verification of the labeled variety. The markers for 10 honey samples were correlated with the standard physicochemical parameters and biological activity measured in vitro as antioxidant, antifungal and antibacterial activities. Honey proteins were examined regarding soluble protein, diastase and SDS-PAGE protein profile. The polyphenolic profile was obtained with the use of the HPTLC and the antioxidant activity was detected with standard colorimetric methods. The antimicrobial effect of representative honey samples of different chemical profiles was verified against E. coli and budding yeast. It was found that the SDS-PAGE technique allows for creating the protein fingerprint of the goldenrod honey variety which was consistent for 70% of tested samples. At the same time, the similarity of their polyphenolic profile was observed. Moreover, specific chemical composition resulted in higher bioactivity of honey against tested bacteria and yeast. The study confirmed the usefulness of both SDS-PAGE and HPTLC techniques in honey authentication, as an initial step for selection of samples which required pollen analysis.
Collapse
|
12
|
The Effect of Adding Spices to Green Walnut Tinctures on Their Polyphenolic Profile, Antioxidant Capacity and Action on Renal Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Green walnuts—unripe fruits of Juglans regia L. are known for their many biological activities and therapeutic potential. Tinctures based on unripe walnuts (samples 1 and 2) and tinctures with the addition of spices (ginger, cloves, bay leaves, juniper fruit: samples 3–6) were tested for polyphenol profile and antioxidant capacity. The effect on a normal monkey kidney epithelial cell line (VERO) was evaluated. For monitoring the changes in cell proliferation, real-time cell analysis (xCELLigence system) was employed and cell viability was measured by the MTS test. All tinctures showed the presence of polyphenols, mainly phenolic acids, flavonoids, and naphthoquinones, and in the sample with cloves, eugenol was found. Addition of spices increased the antioxidant capacity. Tinctures show a dose-dependent cytotoxic effect. The lowest concentrations (125 µg mL−1) of both tinctures without additives (1 and 2) and with bay leaves (4) did not adversely affect (p > 0.05) and even supported cell proliferation (p < 0.05) in comparison to the control cells without treatment. Viability was lower in all cells except for the cells treated with tincture with cloves addition (p > 0.05). It indicates the beneficial effect of cloves enrichment and supports the assumption that the appropriate dosage of tinctures is necessary to be safe for the consumers.
Collapse
|
13
|
Potential Role of Agrimonia eupatoria L. Extract in Cell Protection Against Toxicity Induced by Bisphenol A. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of this study is to reveal the potentially protective role of ethanolic extract of agrimony (Agrimonia eupatoria L.) against the cytotoxic effect of bisphenol A (BPA) in vitro, using an intestinal porcine epithelial cell line (IPEC-1). The cells were exposed to different concentrations of BPA: 12.5, 25, 50, 100, and 200 µg.ml–1 alone and in combination with agrimony extract (250 µg.ml–1). The proliferative cell response was monitored for 72 h by a xCELLigence system or real-time cell analyser (RTCA), recorded as the cell index (CI) and expressed as a proliferative activity (% PA) compared to the control cells without treatment. The metabolic activity was measured by a MTS colorimetric test, performed after 48 h of treatment with the tested substances. The cytotoxic effect on cells exposed to BPA alone, in comparison to the control cells without treatment, was observed in both assays (P < 0.0001). It was confirmed that BPA reduces both the metabolic activity and the proliferation of cells. After the cell treatment with agrimony, the metabolic activity had increased to reach over the control (101.52 %), while reducing the proliferation of the cells. The protective role of agrimony against cytotoxicity caused by BPA was observed after cell treatment with agrimony in combination with lower concentrations of BPA (12.5; 25 and 50 µg.ml–1). The slight improvement in the adherence was observed in cells treated with these combinations, in comparison to the cells treated with BPA alone. On the other hand, the metabolic activity was slightly improved in cells treated with a combination of agrimony and BPA at higher concentrations (50 a 100 µg.ml–1). This supported our assumption that agrimony can protect a model organism against cytotoxicity caused by BPA.
Collapse
|
14
|
Przeor M. Some Common Medicinal Plants with Antidiabetic Activity, Known and Available in Europe (A Mini-Review). Pharmaceuticals (Basel) 2022; 15:ph15010065. [PMID: 35056122 PMCID: PMC8778315 DOI: 10.3390/ph15010065] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a metabolic disease that affected 9.3% of adults worldwide in 2019. Its co-occurrence is suspected to increase mortality from COVID-19. The treatment of diabetes is mainly based on the long-term use of pharmacological agents, often expensive and causing unpleasant side effects. There is an alarming increase in the number of pharmaceuticals taken in Europe. The aim of this paper is to concisely collect information concerning the few antidiabetic or hypoglycaemic raw plant materials that are present in the consciousness of Europeans and relatively easily accessible to them on the market and sometimes even grown on European plantations. The following raw materials are discussed in this mini-review: Morus alba L., Cinnamomum zeylanicum J.Presl, Trigonella foenum-graecum L., Phaseolus vulgaris L., Zingiber officinale Rosc., and Panax ginseng C.A.Meyer in terms of scientifically tested antidiabetic activity and the presence of characteristic biologically active compounds and their specific properties, including antioxidant properties. The characteristics of these raw materials are based on in vitro as well as in vivo studies: on animals and in clinical studies. In addition, for each plant, the possibility to use certain morphological elements in the light of EFSA legislation is given.
Collapse
Affiliation(s)
- Monika Przeor
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
15
|
Ak G, Gevrenova R, Sinan KI, Zengin G, Zheleva D, Mahomoodally MF, Senkardes I, Brunetti L, Leone S, Di Simone SC, Recinella L, Chiavaroli A, Menghini L, Orlando G, Ferrante C. Tanacetum vulgare L. (Tansy) as an effective bioresource with promising pharmacological effects from natural arsenal. Food Chem Toxicol 2021; 153:112268. [PMID: 34015423 DOI: 10.1016/j.fct.2021.112268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 01/24/2023]
Abstract
The Tanacetum genus is a big treasure with the presence of biologically-active compounds and members of this genus are widely used for the treatment of several diseases in traditional medicine system. Considering this fact, we aimed to analyze the extracts from Tanacetum vulgare L. in case of chemical profiles and biological effects. Chemical characterization was performed by using UHPLC-HRMS technique and showed the presence of several phytochemical groups (107 compounds were identified, including phenolic acids, flavonoids, terpenoids and fatty acids. Biological abilities were examined by using antioxidant (DPPH, ABTS, FRAP, CUPRAC, metal chelating and phosphomolybdenum assays) and enzyme inhibition (tyrosinase, amylase, glucosidase and cholinesterase) properties. Pharmaco-toxicological investigations were also performed with the aim to identify limits of biocompatibility, anti-oxidant and neuromodulatory effects, in hypothalamic HypoE22 cells. A bioinformatic analysis was also carried to unravel the putative protein-targets for the observed biological effects. Generally, the tested hexane and hydroalcoholic extracts displayed stronger activities in antioxidant and enzyme inhibitory assays, when compared with water. In addition, multivariate analysis was performed to understand the differences in both solvents and plant parts and we clearly observed the separation of these parameters. The extracts (10 μg/mL) also stimulated DAT and inhibited TNFα and BDNF gene expression, in HypoE22 cells. In parallel, the extracts were also able to stimulate norepinephrine release from this cell line. By contrast, in the concentration range 50-100 μg/mL, the extracts reduced the HypoE22 viability, thus demonstrating cytotoxicity at concentrations 5-10 fold higher compared to those effective as neuromodulatory. Our observations manifested that T. vulgare has several beneficial effects and it can be used as a potential natural raw material for designing further health-promoting applications in nutraceutical, cosmeceutical, and pharmaceutical areas.
Collapse
Affiliation(s)
- Gunes Ak
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, Bulgaria
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey.
| | - Dimitrina Zheleva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, Bulgaria
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius
| | - Ismail Senkardes
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Luigi Brunetti
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy.
| | - Claudio Ferrante
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| |
Collapse
|
16
|
Petrilla V, Polláková M, Bekešová B, Andrejčáková Z, Vlčková R, Marcinčáková D, Petrillová M, Petrovová E, Sopková D, Legáth J. A Comprehensive Study Monitoring the Venom Composition and the Effects of the Venom of the Rare Ethiopian Endemic Snake Species Bitis parviocula. Toxins (Basel) 2021; 13:toxins13050299. [PMID: 33922392 PMCID: PMC8145047 DOI: 10.3390/toxins13050299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
The Ethiopian endemic snake of the species Bitis parviocula, recognized for its colorful patterns, might be more interesting as we look deeper into the venom activity. We assayed the effects of venoms from the most widespread venomous African Bitis arietens and closely related species Bitis parviocula using The Hen’s Egg Test—Chorioallantoic membrane test (HET-CAM) and Chicken embryotoxicity screening test (CHEST), acetylcholinesterase (AChE) analysis, cytotoxicity assay performed on cell lines and protein analysis of selected venoms. Our results indicated that B. parviocula venom contains vasoactive compounds that have a direct effect on blood vessels. The AChE analysis showed significant ability inhibiting AChE activity in embryonic tissue. Cytotoxicity observed on A549 ATCC® CCL-185™ cells indicates the possible presence of cytotoxic agents in B. parviocula venom. We proved previously described differences in the composition of venom obtained from B. arietans and B. parviocula by using electrophoresis and total protein concentration. Based on similarities in vasoactive effects observed after administration of venoms onto a chicken chorioallantoic membrane, we suggest that venom from B. arietans and B. parviocula might share certain venom proteins responsible for haemotoxicity. The main active components of B. parviocula venom are unknown. Our results suggest that it might be worth performing proteomic analysis of B. parviocula venom as it might contain medically valuable compounds.
Collapse
Affiliation(s)
- Vladimír Petrilla
- Department of Biology and Physiology, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.P.); (B.B.); (Z.A.); (R.V.); (D.S.)
- Zoological Department, Zoological Garden Košice, Široká 31, 040 06 Košice-Kavečany, Slovakia
| | - Magdaléna Polláková
- Department of Biology and Physiology, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.P.); (B.B.); (Z.A.); (R.V.); (D.S.)
- Correspondence: ; Tel.: +421-915-909-699
| | - Barbora Bekešová
- Department of Biology and Physiology, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.P.); (B.B.); (Z.A.); (R.V.); (D.S.)
| | - Zuzana Andrejčáková
- Department of Biology and Physiology, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.P.); (B.B.); (Z.A.); (R.V.); (D.S.)
| | - Radoslava Vlčková
- Department of Biology and Physiology, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.P.); (B.B.); (Z.A.); (R.V.); (D.S.)
| | - Dana Marcinčáková
- Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (D.M.); (J.L.)
| | - Monika Petrillová
- Department of General Competencies, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Eva Petrovová
- Department of Morphological Disciplines, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Drahomíra Sopková
- Department of Biology and Physiology, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (V.P.); (B.B.); (Z.A.); (R.V.); (D.S.)
| | - Jaroslav Legáth
- Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (D.M.); (J.L.)
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|