1
|
Janowska S, Andrzejczuk S, Gawryś P, Wujec M. Synthesis and Antimicrobial Activity of New Mannich Bases with Piperazine Moiety. Molecules 2023; 28:5562. [PMID: 37513434 PMCID: PMC10384309 DOI: 10.3390/molecules28145562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
A series of novel Mannich bases were designed, synthesized, and screened for their antimicrobial activity. The target compounds were synthesized from 4-(3-chlorophenyl)-5-(3-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione and different piperazine derivatives. The structures of the products were confirmed by 1H and 13C NMR and elemental analysis. The activity of piperazine derivatives against bacteria (Gram-positive: Staphylococcus epidermidis, Staphylococcus aureus, Micrococcus luteus, Bacillus cereus, and Bacillus subtilis; Gram-negative: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Proteus mirabilis) and yeasts (Candida glabrata, Candida krusei, and Candida parapsilosis) was determined by the minimum inhibitory concentration and minimum bactericidal concentration values. Significant activity was observed against Gram-positive bacteria, mainly staphylococci (PG7-PG8) and bacteria of the genes of Micrococcus and Bacillus (PG1-3), as well as selected strains of Gram-negative bacteria, including bacteria of the Enterobacteriaceae family (PG7), while all tested compounds showed high fungistatic activity against Candida spp. yeasts, especially C. parapsilosis, with MICs ranging from 0.49 µg/mL (PG7) to 0.98 µg/mL (PG8) and 62.5 µg/mL (PG1-3). In conclusion, the results obtained confirm the multidirectional antimicrobial activity of the newly synthesized piperazine derivatives. Furthermore, in silico studies suggest that the tested compounds are likely to have good oral bioavailability. The results obtained will provide valuable data for further research into this interesting group of compounds. The library of compounds obtained is still the subject of pharmacological research aimed at finding new interesting biologically active compounds.
Collapse
Affiliation(s)
- Sara Janowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Sylwia Andrzejczuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Piotr Gawryś
- Students Research Group, Department of Organic Chemistry, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Teng QH, Lu FL, Wang K, Zhou LY, Li DP. Chemodivergent Photocatalyzed Heterocyclization of Hydrazones and Isothiocyanates for the Selectivity Synthesis of 2-Amino-1,3,4-thiadiazoles and 1,2,4-Triazole-3-thiones. J Org Chem 2023. [PMID: 37141629 DOI: 10.1021/acs.joc.3c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A photocatalytic chemodivergent reaction for the selectivity formation of C-S and C-N bonds in a controlled manner was proposed. The reaction medium, either neutral or acidic, is critical to dictate the formation of 2-amino-1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones from isothiocyanates and hydrazones. This is a practical protocol to achieve the chemoselectivity under mild and metal-free conditions.
Collapse
Affiliation(s)
- Qing-Hu Teng
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Feng-Lai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Li-Ya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
3
|
Experimental and computational studies of tautomerism pyridine carbonyl thiosemicarbazide derivatives. Struct Chem 2023. [DOI: 10.1007/s11224-023-02152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
AbstractTautomerism is one of the most important phenomena to consider when designing biologically active molecules. In this work, we use NMR spectroscopy, IR, and X-ray analysis as well as quantum-chemical calculations in the gas phase and in a solvent to study tautomerism of 1- (2-, 3- and 4-pyridinecarbonyl)-4-substituted thiosemicarbazide derivatives. The tautomer containing both carbonyl and thione groups turned out to be the most stable. The results of the calculations are consistent with the experimental data obtained from NMR and IR spectroscopy and with the crystalline forms from the X-ray studies. The obtained results broaden the knowledge in the field of structural studies of the thiosemicarbazide scaffold, which will translate into an understanding of the interactions of compounds with a potential molecular target.
Collapse
|
4
|
X-ray Structures and Computational Studies of Two Bioactive 2-(Adamantane-1-carbonyl)- N-substituted Hydrazine-1-carbothioamides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238425. [PMID: 36500517 PMCID: PMC9741201 DOI: 10.3390/molecules27238425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Two biologically active adamantane-linked hydrazine-1-carbothioamide derivatives, namely 2-(adamantane-1-carbonyl)-N-(tert-butyl)hydrazine-1-carbothioamide) 1 and 2-(adamantane-1-carbonyl)-N-cyclohexylhydrazine-1-carbothioamide 2, have been synthesized. X-ray analysis was conducted to study the effect of the t-butyl and cyclohexyl moieties on the intermolecular interactions and conformation of the molecules in the solid state. X-ray analysis reveals that compound 1 exhibits folded conformation, whereas compound 2 adopts extended conformation. The Hirshfeld surface analysis indicates that the contributions of the major intercontacts involved in the stabilization of the crystal structures do not change much as a result of the t-butyl and cyclohexyl moieties. However, the presence and absence of these contacts is revealed by the 2D-fingerprint plots. The CLP-Pixel method was used to identify the energetically significant molecular dimers. These dimers are stabilized by different types of intermolecular interactions such as N-H···S, N-H···O, C-H···S, C-H···O, H-H bonding and C-H···π interactions. The strength of these interactions was quantified by using the QTAIM approach. The results suggest that N-H···O interaction is found to be stronger among other interactions. The in vitro assay suggests that both compounds 1 and 2 exhibit urease inhibition potential, and these compounds also display moderate antiproliferative activities. Molecular docking analysis shows the key interaction between urease enzyme and title compounds.
Collapse
|
5
|
Cebeci YU, Ceylan Ş, Karaoğlu ŞA, Altun M. An Efficient
Microwave‐Assisted
Synthesis of Novel
Quinolone‐Triazole
and
Conazole‐Triazole
Hybrid Derivatives as Antimicrobial and Anticancer Agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Şule Ceylan
- Artvin Çoruh University, Faculty of Forestry, Department of Forest Industrial Engineering Artvin Turkey
| | | | - Muhammed Altun
- Cankiri Karatekin University, Faculty of Science, Department of Chemistry Cankiri Turkey
| |
Collapse
|
6
|
Ullah I, Ilyas M, Omer M, Alamzeb M, Adnan, Sohail M. Fluorinated triazoles as privileged potential candidates in drug development—focusing on their biological and pharmaceutical properties. Front Chem 2022; 10:926723. [PMID: 36017163 PMCID: PMC9395585 DOI: 10.3389/fchem.2022.926723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Fluorinated heterocycles have attracted extensive attention not only in organic synthesis but also in pharmaceutical and medicinal sciences due to their enhanced biological activities than their non-fluorinated counterparts. Triazole is a simple five-membered heterocycle with three nitrogen atoms found in both natural and synthetic molecules that impart a broad spectrum of biological properties including but not limited to anticancer, antiproliferative, inhibitory, antiviral, antibacterial, antifungal, antiallergic, and antioxidant properties. In addition, incorporation of fluorine into triazole and its derivatives has been reported to enhance their pharmacological activity, making them promising drug candidates. This mini-review explores the current developments of backbone-fluorinated triazoles and functionalized fluorinated triazoles with established biological activities and pharmacological properties.
Collapse
|
7
|
Drug Delivery Systems Based on Pluronic Micelles with Antimicrobial Activity. Polymers (Basel) 2022; 14:polym14153007. [PMID: 35893968 PMCID: PMC9331063 DOI: 10.3390/polym14153007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Bacterial oral diseases are chronic, and, therefore, require appropriate treatment, which involves various forms of administration and dosing of the drug. However, multimicrobial resistance is an increasing issue, which affects the global health system. In the present study, a commercial amphiphilic copolymer, Pluronic F127, was used for the encapsulation of 1-(5′-nitrobenzimidazole-2′-yl-sulphonyl-acetyl)-4-aryl-thiosemicarbazide, which is an original active pharmaceutical ingredient (API) previously synthesized and characterized by our group, at different copolymer/API weight ratios. The obtained micellar systems, with sizes around 20 nm, were stable during 30 days of storage at 4 °C, without a major increase of the Z-average sizes. As expected, the drug encapsulation and loading efficiencies varied with the copolymer/API ratio, the highest values of 84.8 and 11.1%, respectively being determined for the F127/API = 10/1 ratio. Moreover, in vitro biological tests have demonstrated that the obtained polymeric micelles (PMs) are both hemocompatible and cytocompatible. Furthermore, enhanced inhibition zones of 36 and 20 mm were observed for the sample F127/API = 2/1 against S. aureus and E. coli, respectively. Based on these encouraging results, it can be admitted that these micellar systems can be an efficient alternative for the treatment of bacterial oral diseases, being suitable either by injection or by a topical administration.
Collapse
|
8
|
Yang L, Sun Y, He L, Fan Y, Wang T, Luo J. Synthesis and herbicidal activity of novel 1,2,4-triazole derivatives containing fluorine, phenyl sulfonyl and pyrimidine moieties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Chinnapaiyan M, Selvam Y, Bassyouni F, Ramu M, Sakkaraiveeranan C, Samickannian A, Govindan G, Palaniswamy M, Ramamurthy U, Abdel-Rehim M. Nanotechnology, Green Synthesis and Biological Activity Application of Zinc Oxide Nanoparticles Incorporated Argemone Mxicana Leaf Extract. Molecules 2022; 27:1545. [PMID: 35268646 PMCID: PMC8911553 DOI: 10.3390/molecules27051545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 01/29/2023] Open
Abstract
Nanomaterial is a rapidly growing area that is used to create a variety of new materials and nanotechnology applications from medical, pharmaceuticals, chemical, mechanical, electronics and several environmental industries including physical, chemical and biological nanoparticles are very important in our daily life. Nanoparticles with leaf extract from the healthy plant are important in the area of research using biosynthesis methods. Because of it's used as an environmentally ecofriendly, other than traditional physical and chemical strategies. In particular, biologically synthesized nanoparticles have become a key branch of nanotechnology. The present work presents a synthesis of zinc oxide nanoparticles using an extract from the Argemone leaf Mexicana. Biosynthetic nanoparticles are characterized by X-ray diffraction (XRD), Ultraviolet visible (UV-vis) spectroscopy analysis, a Fourier Transform Infrared Spectroscopy analysis (FTIR) and a scanning electron microcopy (SEM), X-ray analysis with dispersive energy (EDAX). XRD is used to examine the crystalline size of zinc oxide nanoparticles. The FTIR test consists in providing evidence of the presence of targeted teams. UV is used for optical properties and calculates the energy of the bandwidth slot. The scanning microscope emission reveals the morphology of the surface and the energy dispersive X-ray analysis confirms the basic composition of zinc oxide nanoparticles. It is found that zinc nanoparticles are capable of achieving high anti-fungal efficacy and therefore have a high potential antimicrobial activity of ZnO NPs, like antibacterial and high antioxidant. Zinc Oxide nanoparticles from the Argemone Mexicana leaf extract have several antimicrobial applications, such as medical specialty, cosmetics, food, biotechnology, nano medicine and drug delivery system. ZnO nanoparticles are important because they provide many practical applications in industry. The most important use of nanoparticles of ZnO would be strong antibacterial and antioxidant activity with a simple and efficient biosynthesis method may be used for future work applications.
Collapse
Affiliation(s)
- Maheswari Chinnapaiyan
- Department of Mathematics, Muthayammal College of Arts and Science, Rasipuram 637408, Tamil Nadu, India; (M.C.); (M.R.)
- PG & Research Department of Mathematics, Arignar Anna Government Arts College, Namakkal 637002, Tamil Nadu, India;
| | - Yashika Selvam
- Department of Physics, Sri Sarada College for Women (Autonomous), Salem 636016, Tamil Nadu, India;
| | - Fatma Bassyouni
- Department of Natural and Microbial Products, National Research Center, Cairo 12662, Egypt
| | - Mathammal Ramu
- Department of Mathematics, Muthayammal College of Arts and Science, Rasipuram 637408, Tamil Nadu, India; (M.C.); (M.R.)
| | | | - Aravindan Samickannian
- Department of Physics, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India; (A.S.); (G.G.); (U.R.)
| | - Gobi Govindan
- Department of Physics, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India; (A.S.); (G.G.); (U.R.)
| | - Matheswaran Palaniswamy
- Department of Chemistry, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India;
| | - Uthrakumar Ramamurthy
- Department of Physics, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India; (A.S.); (G.G.); (U.R.)
| | - Mohamed Abdel-Rehim
- Department of Materials and Nanophysics, KTH Royal Institute of Technology, SE-11419 Stockholm, Sweden;
| |
Collapse
|
10
|
Fizer M, Slivka M, Sidey V, Baumer V, Fizer O. On the protonation of a polysubstituted 1,2,4-triazole: A structural study of a hexabromotellurate salt. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Mustafa YF, Kasim SM, Al-Dabbagh BM, Al-Shakarchi W. Synthesis, characterization and biological evaluation of new azo-coumarinic derivatives. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Synthesis, characterization, and biomedical assessment of novel bisimidazole–coumarin conjugates. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Yu C, Wang H, Min L, Han L, Shi J, Liu X. Synthesis, Cyrstal Structure and Fungicidal Activity of New Triazole Compounds Containing Trifluoromethylphenyl Moiety. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|