1
|
Varghese R, Emerson A, Vannier B, George Priya Doss C, Priyadharshini R, Efferth T, Ramamoorthy S. Substantial Effects of Carotenoids on Skin Health: A Mechanistic Perspective. Phytother Res 2025. [PMID: 40159662 DOI: 10.1002/ptr.8480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 04/02/2025]
Abstract
There has been an upsurge in the incidences of skin disorders and their mortalities owing to various environmental, hormonal, and epigenetic risk factors. Melanoma, atopic dermatitis, psoriasis, and photoaging and associated consequences are largely observed in the population globally. The social stigma, economic burden, and adverse effects from chronic medication endured by the patients emphasize the necessity of more effective natural therapeutics. Carotenoids are economically valuable tetraterpenoid pigments synthesized by plants and microorganisms, which play a paramount role in their overall growth and development. Extensive in vitro and in vivo investigations evidenced that phytopigments like carotenoids target multiple intracellular signaling pathways involving the mitogen-activated protein kinases, Janus kinase/signal transducers, and activators of transcription, apoptotic, and autophagy proteins to ameliorate melanoma. Besides, carotenoids curbed the activation and the release of immunoregulatory molecules such as cytokines and chemokines to abrogate skin immune disorders, photoaging, and associated consequences. Here, we provide a holistic discussion on the pathophysiology of prominent skin disorders and the ameliorating effects of carotenoids as evidenced in the in vitro, in vivo, and clinical interventions. We also advocate the requisite of formulating carotenoid medications after extensive clinical interventions and validation for mitigating various skin dysfunctions.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arnold Emerson
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Brigitte Vannier
- CoMeT Laboratory (UR 24344), Cell Communications and Microenvironment of Tumours, Université of Poitiers, Poitiers Cedex 9, France
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Jiang C, Chen Z, Liao W, Zhang R, Chen G, Ma L, Yu H. The Medicinal Species of the Lycium Genus (Goji Berries) in East Asia: A Review of Its Effect on Cell Signal Transduction Pathways. PLANTS (BASEL, SWITZERLAND) 2024; 13:1531. [PMID: 38891336 PMCID: PMC11174690 DOI: 10.3390/plants13111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Natural plants contain numerous chemical compounds that are beneficial to human health. The berries from the Lycium genus are widely consumed and are highly nutritious. Moreover, their chemical constituents have attracted attention for their health-promoting properties. In East Asia, there are three varieties of the Lycium genus (Lycium barbarum L., Lycium chinense Miller, and L. ruthenicum Murray) that possess medicinal value and are commonly used for treating chronic diseases and improving metabolic disorders. These varieties are locally referred to as "red Goji berries" or "black Goji berries" due to their distinct colors, and they differ in their chemical compositions, primarily in terms of carotenoid and anthocyanin content. The pharmacological functions of these berries include anti-aging, antioxidant, anti-inflammatory, and anti-exercise fatigue effects. This review aims to analyze previous and recent studies on the active ingredients and pharmacological activities of these Lycium varieties, elucidating their signaling pathways and assessing their impact on the gut microbiota. Furthermore, the potential prospects for using these active ingredients in the treatment of COVID-19 are evaluated. This review explores the potential targets of these Lycium varieties in the treatment of relevant diseases, highlighting their potential value in drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijuan Ma
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| | - Haijie Yu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| |
Collapse
|
3
|
Li SY, Wang GQ, Long L, Gao JL, Zhou ZQ, Wang YH, Lv JM, Chen GD, Hu D, Abe I, Gao H. Functional and structural dissection of glycosyltransferases underlying the glycodiversity of wolfberry-derived bioactive ingredients lycibarbarspermidines. Nat Commun 2024; 15:4588. [PMID: 38816433 PMCID: PMC11139883 DOI: 10.1038/s41467-024-49010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.
Collapse
Affiliation(s)
- Shao-Yang Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Liang Long
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jia-Ling Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Soltan OM, Abdel-Aziz SA, Sh Shaykoon M, Osawa K, Narumi A, Abdel-Aziz M, Shoman ME, Konno H. Development of 1,5-diarylpyrazoles as EGFR/JNK-2 dual inhibitors: design, synthesis, moleecular docking, and bioactivity evaluation. Bioorg Med Chem Lett 2024; 102:129673. [PMID: 38408511 DOI: 10.1016/j.bmcl.2024.129673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
The eradication of multifactorial diseases, such as cancer, requires the design of drug candidates that attack multiple targets that contribute to the progression and proliferation of such diseases. Here, 1,5-diarylpyrazole derivatives bearing vanillin or sulfanilamide are developed as potential dual inhibitors of epidermal growth factor receptor (EGFR)/c-Jun N-terminal kinase 2 (JNK-2) for possible anticancer activity. These derivatives inhibited the growths of DLD-1, HeLa, K-562, SUIT-2 and HepG2 cancer cell lines, with minimum concentration required to inhibit half of the cellular growth (IC50) values of 2.7-63 μM. The tests confirmed that 5b and 5d were potent JNK-2 inhibitors, with IC50 of 2.0 and 0.9 μM, respectively, whereas 6 h selectively inhibited EGFR protein kinase (EGFR-PK) (IC50 = 1.7 μM). Notably, 6c inhibited both kinases, with IC50 values of 2.7 and 3.0 μM against EGFR-PK and JNK-2, respectively, offering a reference for designing mutual inhibitors of EGFR/JNK-2. The docking studies revealed the ability of the pyrazole ring to bind to the hinge region of the ATP binding site, thereby supporting the experimental inhibitory results. Furthermore, the developed compounds could induce apoptosis and induce cell cycle arrest at different cell phases.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111 Minia, Egypt
| | - Montaser Sh Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Keima Osawa
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
5
|
Sharifi‐Rad J, Quetglas‐Llabrés MM, Sureda A, Mardones L, Villagran M, Sönmez Gürer E, Živković J, Ezzat SM, Zayed A, Gümüşok S, Sibel Kılıç C, Fasipe B, Laher I, Martorell M. Supercharging metabolic health with Lycium barbarum L.: A review of the therapeutic potential of this functional food for managing metabolic syndrome. FOOD FRONTIERS 2024; 5:420-434. [DOI: 10.1002/fft2.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractMetabolic syndrome (MetS) is a common disorder involving a cluster of metabolic abnormalities, such as abdominal obesity, hypertension, dyslipidemia, insulin resistance, and atherogenic profile. MetS is characterized by an increase in oxidative stress and a chronic proinflammatory state, which are directly related to the development and progression of this pathology. It has been seen how a healthy lifestyle and good dietary practices are key to improving the different metabolic parameters and, therefore, play a fundamental role in reducing the risk of developing diabetes. The present review focuses on the research evidence related to the therapeutic properties of Lycium barbarum L. in MetS gathered in the last years. Several preclinical studies suggest that L. barbarum extracts are a good dietary supplement for the prevention of cardiovascular diseases in people with MetS. This compound has been used for years in traditional Chinese medicine for the treatment of atrophic gastritis, problems related to the lungs, kidneys, and liver, and as a supplement for eye health. In addition, different in vitro and in vivo studies have been carried out that support the properties attributed to metabolites derived from L. barbarum, such as polysaccharides that have been shown diverse biological activities. In conclusion, L. barbarum extracts have multiple benefits to increase general well‐being and immune function. However, there are a limited number of studies related to effect of L. barbarum in MetS, but they demonstrated effectiveness in the treatment of obesity, diabetes mellitus type 2, and prevention of diabetes mellitus type 2 complication.
Collapse
Affiliation(s)
| | - Maria Magdalena Quetglas‐Llabrés
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdISBa) University of the Balearic Islands‐IUNICS Palma de Mallorca, Mallorca Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdISBa) University of the Balearic Islands‐IUNICS Palma de Mallorca, Mallorca Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition) Instituto de Salud Carlos III Madrid Spain
| | - Lorena Mardones
- Department of Basic Science, Faculty of Medicine Universidad Católica de la Santísima Concepcion Concepción Chile
| | - Marcelo Villagran
- Department of Basic Science, Faculty of Medicine Universidad Católica de la Santísima Concepcion Concepción Chile
- Scientific‐Technological Center for the Sustainable Development of the Coastline Universidad Católica de la Santísima Concepción Concepción Chile
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy Sivas Cumhuriyet University Sivas Turkey
| | - Jelena Živković
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1 Belgrade Serbia
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University Cairo Egypt
- Department of Pharmacognosy, Faculty of Pharmacy October University for Modern Science and Arts (MSA) 6th of October Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy Tanta University, College of Pharmacy Tanta Egypt
| | - Safa Gümüşok
- Department of Pharmaceutical Botany Ankara University Faculty of Pharmacy Ankara Turkey
| | - Ceyda Sibel Kılıç
- Department of Pharmaceutical Botany Ankara University Faculty of Pharmacy Ankara Turkey
| | - Babatunde Fasipe
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics Bowen University Iwo Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics The University of British Columbia Vancouver British Columbia Canada
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living University of Concepción Concepción Chile
| |
Collapse
|
6
|
Wang J, Rani N, Jakhar S, Redhu R, Kumar S, Kumar S, Kumar S, Devi B, Simal-Gandara J, Shen B, Singla RK. Opuntia ficus-indica (L.) Mill. - anticancer properties and phytochemicals: current trends and future perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1236123. [PMID: 37860248 PMCID: PMC10582960 DOI: 10.3389/fpls.2023.1236123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
Cancer is a leading cause of mortality worldwide, and conventional cancer therapies such as chemotherapy and radiotherapy often result in undesirable and adverse effects. Natural products have emerged as a promising alternative for cancer treatment, with comparatively fewer side effects reported. Opuntia ficus-indica (L.) Mill., a member of the Cactaceae family, contains a diverse array of phytochemicals, including flavonoids, polyphenols, betalains, and tannins, which have been shown to exhibit potent anticancer properties. Various parts of the Opuntia plant, including the fruits, stems/cladodes, and roots, have demonstrated cytotoxic effects against malignant cell lines in numerous studies. This review comprehensively summarizes the anticancer attributes of the phytochemicals found in Opuntia ficus-indica (L.) Mill., highlighting their potential as natural cancer prevention and treatment agents. Bibliometric metric analysis of PubMed and Scopus-retrieved data using VOSviewer as well as QDA analysis provide further insights and niche to be explored. Most anticancer studies on Opuntia ficus-indica and its purified metabolites are related to colorectal/colon cancer, followed by melanoma and breast cancer. Very little attention has been paid to leukemia, thyroid, endometrial, liver, and prostate cancer, and it could be considered an opportunity for researchers to explore O. ficus-indica and its metabolites against these cancers. The most notable mechanisms expressed and validated in those studies are apoptosis, cell cycle arrest (G0/G1 and G2/M), Bcl-2 modulation, antiproliferative, oxidative stress-mediated mechanisms, and cytochrome c. We have also observed that cladodes and fruits of O. ficus-indica have been more studied than other plant parts, which again opens the opportunity for the researchers to explore. Further, cell line-based studies dominated, and very few studies were related to animal-based experiments. The Zebrafish model is another platform to explore. However, it seems like more in-depth studies are required to ascertain clinical utility of this biosustainable resource O. ficus-indica.
Collapse
Affiliation(s)
- Jiao Wang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Neeraj Rani
- Shri Baba Mastnath Institute of Pharmaceutical Science and Research, Baba Mastnath University, Asthal Bohar Rohtak, Haryana, India
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Seema Jakhar
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Rakesh Redhu
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Sanjiv Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Sachin Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Sanjeev Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Bhagwati Devi
- Shri Baba Mastnath Institute of Pharmaceutical Science and Research, Baba Mastnath University, Asthal Bohar Rohtak, Haryana, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
7
|
Abdelrahman KS, Hassan HA, Abdel-Aziz SA, Marzouk AA, Shams R, Osawa K, Abdel-Aziz M, Konno H. Development and Assessment of 1,5-Diarylpyrazole/Oxime Hybrids Targeting EGFR and JNK-2 as Antiproliferative Agents: A Comprehensive Study through Synthesis, Molecular Docking, and Evaluation. Molecules 2023; 28:6521. [PMID: 37764297 PMCID: PMC10537604 DOI: 10.3390/molecules28186521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
New 1,5-diarylpyrazole oxime hybrid derivatives (scaffolds A and B) were designed, synthesized, and then their purity was verified using a variety of spectroscopic methods. A panel of five cancer cell lines known to express EGFR and JNK-2, including human colorectal adenocarcinoma cell line DLD-1, human cervical cancer cell line Hela, human leukemia cell line K562, human pancreatic cell line SUIT-2, and human hepatocellular carcinoma cell line HepG2, were used to biologically evaluate for their in vitro cytotoxicity for all the synthesized compounds 7a-j, 8a-j, 9a-c, and 10a-c. The oxime containing compounds 8a-j and 10a-c were more active as antiproliferative agents than their non-oxime congeners 7a-j and 9a-c. Compounds 8d, 8g, 8i, and 10c inhibited EGFR with IC50 values ranging from 8 to 21 µM when compared with sorafenib. Compound 8i inhibited JNK-2 as effectively as sorafenib, with an IC50 of 1.0 µM. Furthermore, compound 8g showed cell cycle arrest at the G2/M phase in the cell cycle analysis of the Hela cell line, whereas compound 8i showed combined S phase and G2 phase arrest. According to docking studies, oxime hybrid compounds 8d, 8g, 8i, and 10c exhibited binding free energies ranging from -12.98 to 32.30 kcal/mol at the EGFR binding site whereas compounds 8d and 8i had binding free energies ranging from -9.16 to -12.00 kcal/mol at the JNK-2 binding site.
Collapse
Affiliation(s)
- Kamal S. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; (S.A.A.-A.); (A.A.M.)
| | - Heba A. Hassan
- Department of Medicinal Chemistry Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| | - Salah A. Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; (S.A.A.-A.); (A.A.M.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61768, Egypt
| | - Adel A. Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; (S.A.A.-A.); (A.A.M.)
- National Center for Natural Products Research, School of Pharmacy, University of Missippi, Oxford, MS 38677, USA
| | - Raef Shams
- Emergent Bioengineering Materials Research Team, RIKEN Centre for Emergent Matter Science, RIKEN, Wako 351-0198, Saitama, Japan;
| | - Keima Osawa
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Yamagata, Japan;
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Yamagata, Japan;
| |
Collapse
|
8
|
Ebrahimnejad P, Rezaeiroshan A, Babaei A, Khanali A, Aghajanshakeri S, Farmoudeh A, Nokhodchi A. Hyaluronic Acid-Coated Chitosan/Gelatin Nanoparticles as a New Strategy for Topical Delivery of Metformin in Melanoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3304105. [PMID: 37313551 PMCID: PMC10260318 DOI: 10.1155/2023/3304105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/14/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Metformin is a multipotential compound for treating diabetes II and controlling hormonal acne and skin cancer. This study was designed to enhance metformin skin penetration in melanoma using nanoparticles containing biocompatible polymers. Formulations with various concentrations of chitosan, hyaluronic acid, and sodium tripolyphosphate were fabricated using an ionic gelation technique tailored by the Box-Behnken design. The optimal formulation was selected based on the smallest particle size and the highest entrapment efficiency (EE%) and used in ex vivo skin penetration study. In vitro antiproliferation activity and apoptotic effects of formulations were evaluated using MTT and flow cytometric assays, respectively. The optimized formulation had an average size, zeta potential, EE%, and polydispersity index of 329 ± 6.30 nm, 21.94 ± 0.05 mV, 64.71 ± 6.12%, and 0.272 ± 0.010, respectively. The release profile of the optimized formulation displayed a biphasic trend, characterized by an early burst release, continued by a slow and sustained release compared to free metformin. The ex vivo skin absorption exhibited 1142.5 ± 156.3 μg/cm2 of metformin deposited in the skin layers for the optimized formulation compared to 603.2 ± 93.1 μg/cm2 for the free metformin. Differential scanning calorimetry confirmed the deformation of the drug from the crystal structure to an amorphous state. The attenuated total reflection Fourier transform infrared results approved no chemical interaction between the drug and other ingredients of the formulations. According to the MTT assay, metformin in nanoformulation exhibited a higher cytotoxic effect against melanoma cancer cells than free metformin (IC50: 3.94 ± 0.57 mM vs. 7.63 ± 0.26 mM, respectively, P < 0.001). The results proved that the optimized formulation of metformin could efficiently decrease cell proliferation by promoting apoptosis, thus providing a promising strategy for melanoma therapy.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azin Khanali
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shaghayegh Aghajanshakeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Farmoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
- Lupin Research Center, Coral Springs, FL, USA
| |
Collapse
|
9
|
Visan S, Soritau O, Tatomir C, Baldasici O, Balacescu L, Balacescu O, Muntean P, Gherasim C, Pintea A. The Bioactive Properties of Carotenoids from Lipophilic Sea buckthorn Extract ( Hippophae rhamnoides L.) in Breast Cancer Cell Lines. Molecules 2023; 28:molecules28114486. [PMID: 37298962 DOI: 10.3390/molecules28114486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In women, breast cancer is the most commonly diagnosed cancer (11.7% of total cases) and the leading cause of cancer death (6.9%) worldwide. Bioactive dietary components such as Sea buckthorn berries are known for their high carotenoid content, which has been shown to possess anti-cancer properties. Considering the limited number of studies investigating the bioactive properties of carotenoids in breast cancer, the aim of this study was to investigate the antiproliferative, antioxidant, and proapoptotic properties of saponified lipophilic Sea buckthorn berries extract (LSBE) in two breast cancer cell lines with different phenotypes: T47D (ER+, PR+, HER2-) and BT-549 (ER-, PR-, HER2-). The antiproliferative effects of LSBE were evaluated by an Alamar Blue assay, the extracellular antioxidant capacity was evaluated through DPPH, ABTS, and FRAP assays, the intracellular antioxidant capacity was evaluated through a DCFDA assay, and the apoptosis rate was assessed by flow cytometry. LSBE inhibited the proliferation of breast cancer cells in a concentration-dependent manner, with a mean IC50 of 16 µM. LSBE has proven to be a good antioxidant both at the intracellular level, due to its ability to significantly decrease the ROS levels in both cell lines (p = 0.0279 for T47D, and p = 0.0188 for BT-549), and at the extracellular level, where the ABTS and DPPH inhibition vried between 3.38-56.8%, respectively 5.68-68.65%, and 35.6 mg/L equivalent ascorbic acid/g LSBE were recorded. Based on the results from the antioxidant assays, LSBE was found to have good antioxidant activity due to its rich carotenoid content. The flow cytometry results revealed that LSBE treatment induced significant alterations in late-stage apoptotic cells represented by 80.29% of T47D cells (p = 0.0119), and 40.6% of BT-549 cells (p = 0.0137). Considering the antiproliferative, antioxidant, and proapoptotic properties of the carotenoids from LSBE on breast cancer cells, further studies should investigate whether these bioactive dietary compounds could be used as nutraceuticals in breast cancer therapy.
Collapse
Affiliation(s)
- Simona Visan
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Olga Soritau
- Department of Cell Biology and Radiobiology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Corina Tatomir
- Department of Cell Biology and Radiobiology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Oana Baldasici
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Loredana Balacescu
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Patricia Muntean
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cristina Gherasim
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Adela Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Zheng T, Gao Y, Zhang Z, Li X, Zang P, Zhao Y, He Z. A study on the anti-skin tumor and anti-UVB damage effects of Gastrodia elata Bl. Products transformed by Armillaria mellea. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2120853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Tong Zheng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Yugang Gao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Zhilong Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - XinYue Li
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Pu Zang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| |
Collapse
|
11
|
Cheng B, Wu X, Li R, Tu J, Lin S, Zhang X, Mo X, Xie T. Associations of serum carotenoids with the severity of sunburn and the risk of cancer: A cross-sectional analysis of 1999-2018 NHANES data. Front Nutr 2022; 9:1051351. [PMID: 36606230 PMCID: PMC9810113 DOI: 10.3389/fnut.2022.1051351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Sunburn is a common problem for outdoor workers and casual outdoor walkers. Carotenoids are important elements in normal function of skin tissue and skin metabolism and are critical in the development of some cancers. However, the possible relationships between sunburn sensitivity, carotenoids and the risk of cancers remain unknown. Objectives To explore the associations of serum carotenoids with sunburn severity and the risk of cancers. Methods A cross-sectional study from the National Health and Nutrition Examination Survey from 1999 to 2018 were conducted. The relationship between sunburn and serum carotenoids, cancers were investigated by unconditional or ordinal logistic regression. Mediation analysis was used to explore the effect of carotenoids on the relationship between sunburn and cancers. Results A total of 25,440 US adults from 1999 to 2018 were enrolled in this study. There were significant differences in sex, race and natural hair color between the sunburn and non-sunburn people. The severity of sunburn was significantly associated with serum trans-β-carotene, cis-β-carotene, combined lutein, and vitamin A. The odds ratios of severe reactions were 5.065 (95% CI: 2.266-11.318) in melanoma patients, 5.776 (95% CI: 3.362-9.922) in non-melanoma patients, and 1.880 (95% CI: 1.484-2.380) in non-skin cancers patients. Additionally, serum carotenoids were partially attributable to the effect of sunburn on skin and non-skin cancers. Conclusion Sunburn severity was associated with cancers, and severer sunburn was related with higher risk of cancers. Serum carotenoids were also associated with sunburn severity. Moreover, the relationship between sunburn and cancers was mediated by some serum carotenoids.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Burns and Plastic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Xixin Wu
- Department of Burns and Plastic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China,Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruina Li
- Department of Clinical Pharmacy, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiayuan Tu
- School of Nursing and Public Health, Yangzhou University, Yangzhou, China
| | - Sixian Lin
- Department of Burns and Plastic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiangda Zhang
- Department of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Xiaoqiao Mo
- Department of Operating Room, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Xie
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Tian Xie,
| |
Collapse
|
12
|
Research progress of Lycium barbarum L. as functional food: phytochemical composition and health benefits. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Flaxseed Ethanol Extracts’ Antitumor, Antioxidant, and Anti-Inflammatory Potential. Antioxidants (Basel) 2022; 11:antiox11050892. [PMID: 35624757 PMCID: PMC9137875 DOI: 10.3390/antiox11050892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The antitumoral, antioxidant, and anti-inflammatory effects of flaxseed ethanol extract was screened. Phytochemical analysis was performed by measuring the total phenolic content and by HPLC-DAD-ESI MS. In vitro antiproliferative activity was appreciated by MMT test of four adenocarcinomas and two normal cell lines. In vitro, antioxidant activity was evaluated by DPPH, FRAP, H2O2, and NO scavenging tests. The in vivo growth inhibitory activity against Ehrlich ascites carcinoma (EAC) in female BALB/c mice was determined using the trypan blue test. In EAC mice serum and ascites total oxidative status, total antioxidant reactivity, oxidative stress index, malondialdehyde, total thiols, total nitrites, 3-nitrotyrosine, and NFkB were measured. The phytochemical analysis found an significant content of phenols, with lignans having the highest concentration. The extract had an significant in vitro antioxidant effect and different inhibitory effects on different cell lines. After treatment of EAC mice with flaxseeds extract, body weight, ascites volume and viable tumour cell count, serum and ascites oxidative stress, and inflammatory markers decreased significantly. The ethanol flaxseeds extract has potential antiproliferative activity against some ovary and endometrial malignant cells and EAC. This effect can be attributed to the phenols content, and its antioxidant and anti-inflammatory activity.
Collapse
|
14
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
15
|
Li Y, Chen K, Liu S, Liang X, Wang Y, Zhou X, Yin Y, Cao Y, An W, Qin K, Sun Y. Diversity and spatiotemporal dynamics of fungal communities in the rhizosphere soil of Lycium barbarum L.: a new insight into the mechanism of geoherb formation. Arch Microbiol 2022; 204:197. [PMID: 35217917 PMCID: PMC8881256 DOI: 10.1007/s00203-022-02781-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/14/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022]
Abstract
Lycium barbarum L. is a well-known traditional geoherb in Ningxia, China. The fruits of L. barbarum contain several dietary constituents, and thus, they exert many beneficial effects on human health. However, a few studies have been conducted on the geoherb L. barbarum and its rhizosphere soil fungal community. In this study, we determined the physicochemical properties and fungal community structure of rhizosphere soil of L. barbarum from three regions of China, namely Ningxia (NX), Qinghai (QH), and Xinjiang (XJ), during three development stages of L. barbarum. Soil pH varied between 7.56 and 8.60 across the three regions, indicating that alkaline soil is conducive to the growth of L. barbarum. The majority of soil properties in NX, an authentic geoherb-producing area, were substantially inferior to those in XJ and QH during all three developmental stages. Total sugar, polysaccharide (LBP), and flavonoid contents were the highest in wolfberry fruits from NX. High-throughput sequencing showed that the abundance of the soil fungal population in NX was higher than that in QH and XJ during the flowering and fruiting stage and summer dormant stage. Moreover, the soil fungal diversity increased with the development of wolfberry. Ascomycota and Mortierellomycota were the predominant phyla in the rhizosphere fungal communities in all samples. Redundancy analysis showed a significant correlation of the soil-available phosphorus and LBP of wolfberry fruits with the fungal community composition. The characteristics of rhizosphere fungal communities determined in the present study provide insights into the mechanism of geoherb formation in NX wolfberry.
Collapse
Affiliation(s)
- Yuekun Li
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Kaili Chen
- The College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Siyang Liu
- The College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yajun Wang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xuan Zhou
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Wei An
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ken Qin
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yanfei Sun
- The College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
16
|
Ko CY, Chao J, Chen PY, Su SY, Maeda T, Lin CY, Chiang HC, Huang SS. Ethnobotanical Survey on Skin Whitening Prescriptions of Traditional Chinese Medicine in Taiwan. Front Pharmacol 2021; 12:736370. [PMID: 34916932 PMCID: PMC8670535 DOI: 10.3389/fphar.2021.736370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
The increasing interest and demand for skin whitening products globally, particularly in Asia, have necessitated rapid advances in research on skin whitening products used in traditional Chinese medicine (TCM). Herein, we investigated 74 skin whitening prescriptions sold in TCM pharmacies in Taiwan. Commonly used medicinal materials were defined as those with a relative frequency of citation (RFC) > 0.2 and their characteristics were evaluated. Correlation analysis of commonly used medicinal materials was carried out to identify the core component of the medicinal materials. Of the purchased 74 skin whitening prescriptions, 36 were oral prescriptions, 37 were external prescriptions, and one prescription could be used as an oral or external prescription. After analysis, 90 traditional Chinese medicinal materials were obtained. The Apiaceae (10%; 13%) and Leguminosae (9%; 11%) were the main sources of oral and external medicinal materials, respectively. Oral skin whitening prescriptions were found to be mostly warm (46%) and sweet (53%), while external skin whitening prescriptions included cold (43%) and bitter (29%) medicinal materials. Additionally, mainly tonifying and replenishing effects of the materials were noted. Pharmacological analysis indicated that these medicinal materials may promote wound healing, treat inflammatory skin diseases, or anti-hyperpigmentation. According to the Spearman correlation analysis on interactions among medicinal materials with an RFC > 0.2 in the oral skin whitening prescriptions, Paeonia lactiflora Pall. (white) and Atractylodes macrocephala Koidz. showed the highest correlation (confidence score = 0.93), followed by Ziziphus jujuba Mill. (red) and Astragalus propinquus Schischkin (confidence score = 0.91). Seven medicinal materials in external skin whitening prescriptions with an RFC > 0.2, were classified as Taiwan qī bái sàn (an herbal preparation), including Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav., Wolfiporia extensa (Peck) Ginns, Bletilla striata (Thunb.) Rchb. f., Atractylodes macrocephala Koidz., Ampelopsis japonica (Thunb.) Makino, Paeonia lactiflora Pall. (white), and Bombyx mori Linnaeus. Skin whitening prescriptions included multiple traditional Chinese medicinal materials. Despite the long history of use, there is a lack of studies concerning skin whitening products, possibly due to the complex composition of traditional Chinese medicine. Further studies are required to assess the efficacy and safety of these traditional Chinese medicinal materials for inclusion in effective, safe, and functional pharmacological products.
Collapse
Affiliation(s)
- Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jung Chao
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Master Program for Food and Drug Safety, China Medical University, Taichung, Taiwan
| | - Pei-Yu Chen
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tomoji Maeda
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Yu Lin
- Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Hung-Che Chiang
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
17
|
|
18
|
Carotenoid Contents of Lycium barbarum: A Novel QAMS Analyses, Geographical Origins Discriminant Evaluation, and Storage Stability Assessment. Molecules 2021; 26:molecules26175374. [PMID: 34500806 PMCID: PMC8433794 DOI: 10.3390/molecules26175374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Given the standard substances of zeaxanthin and its homologues obtained from Lycium barbarum L. (LB) are extremely scarce and unstable, a novel quantitative analysis of carotenoids by single marker method, named QAMS, was established. Four carotenoids including lutein, zeaxanthin, β-carotene, and zeaxanthin dipalmitate were determined simultaneously by employing trans-β-apo-8′-carotenal, a carotenoid component which did not exist in LB, as standard reference. Meanwhile, β-carotene, another carotenoid constituent which existed in LB, was determined as contrast. The QAMS methods were fully verified and exhibited low standard method difference with the external standard method (ESM), evidenced by the contents of four carotenoids in 34 batches of LB samples determined using ESM and QAMS methods, respectively. HCA, PCA, and OPLS-DA analysis disclosed that LB samples could be clearly differentiated into two groups: one contained LB samples collected from Ningxia and Gansu; the other was from Qinghai, which was directly related to the different geographical location. Once exposed under high humidity (RH 75 ± 5%) at a high temperature (45 ± 5 °C) as compared with ambient temperature (25 ± 5 °C), from day 0 to day 28, zeaxanthin dipalmitate content was significantly decreased, and ultimately, all the decrease rates reached about 80%, regardless of the storage condition. Our results provide a good basis for improving the quality control of LB.
Collapse
|