1
|
Nieweś D, Marecka K. Potential of Compost and Spent Coffee Grounds as Sources of Humic-Like Substances: Extraction Modeling and Optimization by Fractional Factorial Design. ACS OMEGA 2025; 10:15762-15774. [PMID: 40290970 PMCID: PMC12019513 DOI: 10.1021/acsomega.5c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Humic substances (HSs) play a crucial role in soil health and have potential applications beyond agriculture. This study evaluates the renewable raw materials such as compost from urban green waste (GWC) and spent coffee grounds (SCG) as sources of humic-like substances (HLSs), which may be an alternative to traditional resources such as peat, lignite, and leonardite. The quantitative analysis focused on modeling and optimizing the efficiency of ultrasound-assisted extraction of humic-like acids (HLAs) as a function of time, ultrasound intensity, extractant concentration (NaOH), and temperature. Experimental points were determined based on the experimental matrix according to fractional factorial design (FFD), and the obtained polynomial models were evaluated using the Fisher test, lack of fit assessment, and determination coefficients. Experimental verification with optimal values of the evaluated parameters demonstrated the possibility of extracting HLAs from GWC and SCG at levels of 27.08 and 19.11%, respectively. The qualitative analysis included humic-like and fulvic-like acids and their comparison with reference samples. Spectroscopic methods (UV-vis, ATR-FTIR, CP/MAS, and 13C NMR) as well as elemental analysis (CHNSO) were used in this part of the study. The results obtained showed the presence of functional groups characteristic of humic substances (polysaccharides, phenols, alcohols, and amides) in the molecular structure of the products. Additionally, they exhibited a higher content of nitrogen and sulfur compared to commercial samples, as well as lower hydrophobicity, which may indicate their biological activity.
Collapse
Affiliation(s)
- Dominik Nieweś
- Department of Engineering
and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wroclaw, Poland
| | - Kinga Marecka
- Department of Engineering
and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wroclaw, Poland
| |
Collapse
|
2
|
Wyszkowski M, Kordala N. The Role of Organic Materials in Shaping the Content of Trace Elements in Iron-Contaminated Soil. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1522. [PMID: 40271741 PMCID: PMC11990221 DOI: 10.3390/ma18071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Iron contamination negatively affects how plants grow and develop, and it has an analogous influence on the health of other organisms. The use of different types of organic soil amendments can be a strategy to reduce the effects of excess iron stress and limit its assimilation by plants. The aim of this experiment was to investigate the possibility of using organic material in the form of humic acids (HAs) to reduce the influence of iron contamination on the content of trace elements (TEs) in the soil. The content of iron in the soil increased linearly (by 14%) as more iron was added. The addition of humic acids to the soil also promoted an increase in soil Fe content (by 12%) in comparison to the series without HAs. The highest dose of iron resulted in a decrease in Cd (by 49%), Pb (by 29%), Cr (by 13%), and Zn (by 10%) and an increase in Mn (by 6%), Cu (by 16%), and Co (by 33%) in the soil in comparison to the object without Fe. However, the first dose of iron increased the lead content, and the first and second dose of Fe also increased the Zn content in the soil. The nickel content in the soil also increased to 500 mg Fe kg-1 of soil. Thereafter, a decline was observed in the nickel content. The addition of organic material had a different influence on the content of individual TEs in the iron-contaminated soils. The most evident constraining impact of HAs pertained to the level of Cd (reducing it by 14%) and Zn in the soil (only for two of its doses). The content of other TEs in the soil after the addition of organic material was found to be higher than in the series without HAs. This was especially evident for elements such as cobalt (Co) and lead (Pb).
Collapse
Affiliation(s)
- Mirosław Wyszkowski
- Department of Agricultural and Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland;
| | | |
Collapse
|
3
|
dos Santos TC, Silva HP, Lima KR, Salvador MLN, Cândido GDS, Pimenta LCJP, Bertolini NO, Ribeiro LB, Fagundes FG, Orlando DR, Borges BDB, Dias-Peixoto MF, Machado ART, Dobbss LB, Pereira LJ, Andrade EF. Humic Acid Derived from Vermicompost Improves Bone Mineral Content and Alters Oxidative Stress Markers in Ovariectomized Mice. Biomedicines 2025; 13:495. [PMID: 40002908 PMCID: PMC11853275 DOI: 10.3390/biomedicines13020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Estrogen depletion alters bone mineralization and oxidative stress. Antioxidants like humic acids (HA) may help mitigate bone demineralization and redox imbalances. Thus, this study evaluated the effects of HA on bone mineral composition and oxidative stress markers in an experimental menopause model. Methods: Twenty-four female C57BL/6 mice were divided into four groups (n = 6/group): Sham; Sham + HA; Ovariectomized (OVX); and OVX + HA. The menopause model was induced by bilateral ovariectomy at the beginning of the experiment. HA derived from biomass vermicompost was administered daily by gavage for 28 days. After euthanasia, femurs and fragments of the gastrocnemius muscle, liver, and kidney were collected. Bone elemental composition was analyzed using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). Superoxide dismutase (SOD), catalase (CAT), and hydrogen peroxide (H2O2) activities were assessed in muscle, renal, and hepatic tissues. Data were analyzed using two-way ANOVA and Bonferroni's post hoc test. Results: Untreated OVX mice exhibited a significant reduction in femoral calcium content (p < 0.05). However, HA treatment increased calcium levels and improved the Ca/P ratio (p < 0.05). H2O2 activity was reduced in the liver and kidney of OVX + HA mice compared to untreated animals (p < 0.05). CAT activity in muscle increased in the OVX + HA group compared to the OVX (p < 0.05). Conclusions: HA treatment improved femoral elemental composition and modulated oxidative stress markers in an experimental menopause model.
Collapse
Affiliation(s)
- Thays Cristina dos Santos
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Hellen Paulo Silva
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Karen Rodrigues Lima
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Maria Luiza Nonato Salvador
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Geraldo de Sousa Cândido
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Laura Cristina Jardim Pôrto Pimenta
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Natália Oliveira Bertolini
- Department of Physical Education, University Center of Lavras (UNILAVRAS), Lavras 37200-000, Minas Gerais, Brazil;
| | - Luciana Botelho Ribeiro
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Filipe Gomes Fagundes
- Department of Exact Sciences, Universidade do Estado de Minas Gerais, João Monlevade 35930-314, Minas Gerais, Brazil; (F.G.F.); (A.R.T.M.)
| | - Débora Ribeiro Orlando
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Bruno Del Bianco Borges
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Marco Fabrício Dias-Peixoto
- Postgraduate Program in Health Sciences (PPGCS), Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39803-371, Minas Gerais, Brazil;
| | - Alan Rodrigues Teixeira Machado
- Department of Exact Sciences, Universidade do Estado de Minas Gerais, João Monlevade 35930-314, Minas Gerais, Brazil; (F.G.F.); (A.R.T.M.)
| | - Leonardo Barros Dobbss
- Institute of Agrarian Sciences, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Unaí 38610-000, Minas Gerais, Brazil;
| | - Luciano José Pereira
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| | - Eric Francelino Andrade
- Faculty of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Minas Gerais, Brazil; (T.C.d.S.); (H.P.S.); (K.R.L.); (M.L.N.S.); (G.d.S.C.); (L.C.J.P.P.); (L.B.R.); (D.R.O.); (B.D.B.B.); (L.J.P.)
| |
Collapse
|
4
|
Pitann B, Khan K, Mühling KH. Does humic acid foliar application affect growth and nutrient status of water-stressed maize? PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10156. [PMID: 38882244 PMCID: PMC11176913 DOI: 10.1002/pei3.10156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Maize (Zea mays L.) is one of the world's most important crops, but its productivity is at high risk as climate change increases the risk of water stress. Therefore, the development of mitigation strategies to combat water stress in agriculture is fundamental to ensure food security. Humic acids are known to have a positive effect on drought tolerance, but data on their efficacy under waterlogging are lacking. This study aimed to elucidate the effect of a new humic acid product, a by-product of Ukrainian bentonite mining, on maize growth and nutrient status under waterlogging. Maize was grown for 9 weeks and three water stress treatments, which were applied for 14 days: waterlogging, alternating waterlogging and drought, and drought. On the day of stress application, the humic acid product (1% v/v) was applied to the leaves. Soil Plant Analysis Development (SPAD) values were recorded during the stress treatments. Plants were harvested after stressing ceased and fresh weight and P and Zn status were analyzed. Drought reduced shoot fresh weight, while it was unaffected under waterlogging. This is in contrast to SPAD readings, which showed a significant decrease over time under submergence, but not under drought. Under alternating stress, although SPAD values declined under waterlogging but stabilized when switched to drought, no growth reduction was apparent. Application of the humic acid product was ineffective in all cases. Although anthocyanin discoloration occurred under waterlogging stress, P deficiency, which is usually the main factor driving anthocyanin formation, was not the reason. Interestingly, Zn concentration decreased under waterlogging but not under the other stresses, which was alleviated by humic acid application. However, no effect of foliar-applied humic acids was observed under alternating and drought stress. It can be concluded that the tested humic acid product has the potential to improve the Zn status of maize under waterlogging.
Collapse
Affiliation(s)
- Britta Pitann
- Institute of Plant Nutrition and Soil Science Kiel University Kiel Germany
| | - Kamran Khan
- Institute of Plant Nutrition and Soil Science Kiel University Kiel Germany
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science Kiel University Kiel Germany
| |
Collapse
|
5
|
Zhao Y, Naeth MA. Synergistic effects of coal waste derived humic substances and inorganic fertilizer as soil amendments for barley in sandy soil. Heliyon 2024; 10:e29620. [PMID: 38699743 PMCID: PMC11063425 DOI: 10.1016/j.heliyon.2024.e29620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Increasing pressures on land resources requires increased land use efficiency. Over 900 million ha of sandy soils throughout the world are extensively used for agricultural crop production, most requiring nutrient inputs. Although use of humic substances together with inorganic fertilizer as soil amendments has been introduced, their synergistic effects on plant growth in sandy soils are not well addressed. We assessed the efficacy of a lignite waste derived humic substance on barley (Hordeum vulgare L.) growth, with and without inorganic fertilizer. Ten treatments were applied to sandy soils, comprising sole application of the humic product at four rates (NH1, NH2, NH3, NH4), sole application of fertilizer (F), and their combinations (F + NH1, F + NH2, F + NH3, F + NH4). Synergistic effects of nano humus and fertilizer were more notable than the corresponding sole application, particularly on plant biomass and seed production. Combined application with inorganic fertilizer increased root biomass by 92 % (0.1 g per plant), shoot biomass by 80 % (0.5 g per plant), root length by 24 % (3.6 cm), and seed production by 38 % (5 seeds per head) averagely relative to the untreated control, suggesting a strong synergistic effect. The increased seed production was particularly important from an agricultural perspective. Four application rates of nano humus all showed beneficial effects on barley growth with no significant differences. The most distinct positive effect of the humic product as a sole application was on root growth. Our study confirmed that a lignite waste derived humic product, nano humus, together with fertilizer may be an effective soil amendment to enhance agricultural plant growth in sandy soil regions.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - M. Anne Naeth
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| |
Collapse
|
6
|
Silva AC, Rocha P, Geraldo D, Cunha A, Antelo J, Pinheiro JP, Fiol S, Bento F. Developing a Compost Quality Index (CQI) Based on the Electrochemical Quantification of Cd (HA) Reactivity. Molecules 2023; 28:molecules28031503. [PMID: 36771168 PMCID: PMC9919838 DOI: 10.3390/molecules28031503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The present work demonstrates the use of Cd2+ as a reactivity probe of the fulvic acids (FAs), humic acids (HAs) and dissolved organic matter (DOM) compost extracts. Significant differences were observed between the extracts, with the HA extract showing the highest reactivity. Comparing the different composts, the largest reactivity variation was again observed for HA then FA and finally DOM extracts. The Cd2+ binding extent was used to calculate the quality of composts and compared with a reference of uncomposted organic fertiliser (FLW), leading to the definition of an operational scale of compost quality. The parameter equivalent mass of fertiliser (mEF) was used for this scale sorted the seven composts from 0.353 to 1.09 kg FLW, for compost of sewage sludge (CSS) and vermicompost of domestic waste (CVDW), respectively. The significance of this parameter was verified through a correlation analysis between binding extent and the effect of compost application on lettuce crop growth in a field trial. The results demonstrate the potentiality of FA and HA extracts as markers of compost bioactivity and the use of Cd2+ as a reactivity probe.
Collapse
Affiliation(s)
- Ana C. Silva
- Department of Chemistry, Centre of Chemistry, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
- CRETUS, Department of Physical Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pedro Rocha
- Department of Chemistry, Centre of Chemistry, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Dulce Geraldo
- Department of Chemistry, Centre of Chemistry, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ana Cunha
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Juan Antelo
- CRETUS, Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José P. Pinheiro
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine/ CNRS, UMR 7360, F54501 Vandoeuvre-lès-Nancy, France
| | - Sarah Fiol
- CRETUS, Department of Physical Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Fátima Bento
- Department of Chemistry, Centre of Chemistry, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
7
|
Socol DC. Clinical review of humic acid as an antiviral: Leadup to translational applications in clinical humeomics. Front Pharmacol 2023; 13:1018904. [PMID: 36712657 PMCID: PMC9875298 DOI: 10.3389/fphar.2022.1018904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
This clinical review presents what is known about the antiviral features of humic substances (HS) to the benefit of the clinical healthcare provider using available data in humeomics, the study of the soil humeome. It provides the reader with a working framework of historical studies and includes clinically relevant data with the goal of providing a broad appreciation of the antiviral potential of humic substances while also preparing for a translational leap into the clinical application of humic acid.
Collapse
Affiliation(s)
- David C. Socol
- Advanced Humeomics LLC, Beverly Hills, CA, United States
- SocolMD, Beverly Hills, CA, United States
| |
Collapse
|
8
|
Li S, Sun K, Latif A, Si Y, Gao Y, Huang Q. Insights into the Applications of Extracellular Laccase-Aided Humification in Livestock Manure Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7412-7425. [PMID: 35638921 DOI: 10.1021/acs.est.1c08042] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional composting is a well-suited biotechnology for on-farm management of livestock manure (LM) but still leads to the release of toxic micropollutants and imbalance of nutrients. One in situ exoenzyme-assisted composting has shown promise to ameliorate the agronomical quality of end products by improving humification and polymerization. The naturally occurring extracellular laccase from microorganisms belongs to a multicopper phenoloxidase, which is verified for its versatility to tackle micropollutants and conserve organics through the reactive radical-enabled decomposition and polymerization channels. Laccase possesses an indispensable relationship with humus formation during LM composting, but its potential applications for the harmless disposal and resource utilization of LM have until now been overlooked. Herein, we review the extracellular laccase-aided humification mechanism and its optimizing strategy to maintain enzyme activity and in situ production, highlighting the critical roles of laccase in treating micropollutants and preserving organics during LM composting. Particularly, the functional effects of the formed humification products by laccase-amended composting on plant growth are also discussed. Finally, the future perspectives and outstanding questions are summarized. This critical review provides fundamental insights into laccase-boosted humification that ameliorates the quality of end products in LM composting, which is beneficial to guide and advance the practical applications of exoenzyme in humification remediation, the carbon cycle, and agriculture protection.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, Anhui, China
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Abdul Latif
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Youbin Si
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| |
Collapse
|
9
|
Lignosulfonate Rapidly Inactivates Human Immunodeficiency and Herpes Simplex Viruses. MEDICINES 2021; 8:medicines8100056. [PMID: 34677485 PMCID: PMC8538131 DOI: 10.3390/medicines8100056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 01/15/2023]
Abstract
Background: Very few studies of the antiviral potential of lignosulfonates have been published. With the aim of oral application, among various groups of natural products, the relative antiviral potency of lignosulfonate and its ability to rapidly inactivate viruses were investigated. Methods: As target cells, MT-4 cells in suspension and attached Vero cells were used for infections with human immunodeficiency virus (HIV) and human herpes simplex type-1 virus (HSV). Mock- or virus-infected cells were incubated for 3–5 days with various concentrations of test samples, and the viable cell number was determined with the MTT method. For the shorter exposure experiments, higher titers of HIV or HSV were exposed to test samples for 10 or 3 min, diluted to a normal multiplicity of infection (MOI), and applied to the cells. Antiviral activity was quantified by using the chemotherapy index. Results: In the long-exposure system, lignosulfonates showed comparable anti-HIV activity with those of AZT, ddC, and sulfated polysaccharides, and it exceeded those of hundreds of tannins and flavonoids. When the exposure time was shortened, the chemotherapeutic index of the lignosulfonates for HIV was increased 27-fold. At a physiological pH, lignosulfonate showed higher anti-HIV activity than commercial alkali-lignin, dealkali-lignin, and humic acid, possibly due to the higher solubility and purity. Conclusions: With their rapid virus-inactivation capabilities, lignosulfonates may be useful for the prevention or treatment of virally induced oral diseases.
Collapse
|
10
|
Nardi S, Schiavon M, Francioso O. Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules 2021; 26:molecules26082256. [PMID: 33924700 PMCID: PMC8070081 DOI: 10.3390/molecules26082256] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Humic substances (HS) are dominant components of soil organic matter and are recognized as natural, effective growth promoters to be used in sustainable agriculture. In recent years, many efforts have been made to get insights on the relationship between HS chemical structure and their biological activity in plants using combinatory approaches. Relevant results highlight the existence of key functional groups in HS that might trigger positive local and systemic physiological responses via a complex network of hormone-like signaling pathways. The biological activity of HS finely relies on their dosage, origin, molecular size, degree of hydrophobicity and aromaticity, and spatial distribution of hydrophilic and hydrophobic domains. The molecular size of HS also impacts their mode of action in plants, as low molecular size HS can enter the root cells and directly elicit intracellular signals, while high molecular size HS bind to external cell receptors to induce molecular responses. Main targets of HS in plants are nutrient transporters, plasma membrane H+-ATPases, hormone routes, genes/enzymes involved in nitrogen assimilation, cell division, and development. This review aims to give a detailed survey of the mechanisms associated to the growth regulatory functions of HS in view of their use in sustainable technologies.
Collapse
Affiliation(s)
- Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, V.le dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Michela Schiavon
- Department of di of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2 (già Via Leonardo da Vinci, 44), 10095 Grugliasco, Italy
- Correspondence:
| | - Ornella Francioso
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy;
| |
Collapse
|