1
|
Qiu W, Zhang K, Wu M, Fu M, Wu H, Tang R, Chen Z, Guo J, Fang F. Tri-Layer Citrate-Based Hydroxyapatite Composite Scaffold Promoting Osteogenesis and Gingival Tissue Regeneration for Periodontal Bone Defect Repair. Adv Healthc Mater 2025; 14:e2501002. [PMID: 40171748 DOI: 10.1002/adhm.202501002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Indexed: 04/04/2025]
Abstract
Periodontal bone defect (PBD) treatment involving oral soft and hard tissues is complicated and high requirements for regenerated materials. Besides osteogenic effects, the materials are also required to have the function of barrier soft tissues and promote wound healing. Citrate is reported to promote bone formation through enhanced osteoinductivity and facilitate wound healing by enabling phased angiogenesis. Herein, a novel tri-layered citrate-based hydroxyapatite (Ci-HA) composite scaffold that serves as a bone substitute is developed by "one-pot" method for PBD treatment. It is found that Ci-HA degradation products can promote the osteoblastic differentiation of rat bone mesenchymal stem cells and human periodontal ligament stem cells and upregulate angiogenesis-related gene expression in human gingival fibroblasts. Moreover, 3D remodeling in vitro shows that an intermediate layer of tri-layered Ci-HA composite scaffold acts as an optimal barrier. In vivo evaluation of Ci-HA in a rat periodontal intrabony three-wall defect model shows significantly increased bone formation with markedly enhanced osseointegration and better wound healing properties similarly with commercial Bio-Oss bone powder and Bio-Gide membrane. Thus, the novel tri-layered Ci-HA composite scaffold with high biocompatibility may represent a promising biomaterial with multi-effective bone regeneration, barrier effect, and wound healing capacity in the treatment of PBD.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Kaiying Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Min Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Hongle Wu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Ruoshu Tang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
2
|
Im JH, Lee MK, Lee HI. Effects of Extraction Methods on Physicochemical Properties and Antioxidant Activity of Mealworm Oil. JOURNAL OF THE KOREAN SOCIETY OF FOOD SCIENCE AND NUTRITION 2024; 53:314-319. [DOI: 10.3746/jkfn.2024.53.3.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 04/21/2025]
Affiliation(s)
- Ju-Hye Im
- Department of Food and Nutrition, Sunchon National University
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University
| | - Hae-In Lee
- Department of Food and Nutrition, Sunchon National University
| |
Collapse
|
3
|
Devi MR, Ummalyma SB, Brockmann A, Raina V, Rajashekar Y. Nutritional properties of giant water bug, Lethocerus indicus a traditional edible insect species of North-East India. Bioengineered 2023; 14:2252669. [PMID: 37642337 PMCID: PMC10467525 DOI: 10.1080/21655979.2023.2252669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 08/31/2023] Open
Abstract
Edible insects play an important role in human health and food security. Among those, the Giant water bug, Lethocerus indicus (Lep.& Ser.) is a widely used edible insect known for its aroma, flavor, and therapeutic purposes. In the present study, we investigated the nutritional profile, natural habitat, and feeding behavior of L. indicus in aquarium conditions. A comparative analysis of male and female insects' aroma contents and fatty acid (FA) profiles was also conducted. A dry fried male insect yielded volatile oil of 0.96%/2 g body weight, whereas a dry fried female yielded 0.48%/5.36 g of body weight. In terms of lipids, fresh male insects had 0.15%/5.42 g of body weight and fresh female insects had 0.28%/9.48 g of body weight. There are 24 volatile compounds specific to males, 37 specific to females, and 13 commons to both were identified. 2-Hexen-1-ol, acetate, (Z)- which smells like banana, was prevalently found in males while 4-Octene, 2,6-dimethyl-, [S-(Z)] was prevalently found in female insects. Fatty acids profile analysis detected 32 FA with 12 unique FA from males whereas 22 FA and 3 unique FA were identified from female insects. The SFA percentage present in males and females was 77.44% and 85.21%. Males had 6.78% MUFA content while females have 4.75%. Males have 18% PUFA content enriched with DHA, and EPA, while females had 10.04%. This study revealed that with the presence of a banana-like smell of volatile compound and more MUFA and PUFA in males, the native people of North-East India preferred male over female insects for entomophagy.
Collapse
Affiliation(s)
- Mutum R. Devi
- Insect Bioresources Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development (IBSD), Department of Biotechnology, Govt. of India, Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed University, Bhubaneswar, Odisha, India
| | - Sabeela B. Ummalyma
- Insect Bioresources Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development (IBSD), Department of Biotechnology, Govt. of India, Imphal, Manipur, India
| | - Axel Brockmann
- National Center for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, Karnataka, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed University, Bhubaneswar, Odisha, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development (IBSD), Department of Biotechnology, Govt. of India, Imphal, Manipur, India
| |
Collapse
|
4
|
Sethuram L, Thomas J. Therapeutic applications of electrospun nanofibers impregnated with various biological macromolecules for effective wound healing strategy - A review. Biomed Pharmacother 2023; 157:113996. [PMID: 36399827 DOI: 10.1016/j.biopha.2022.113996] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
A Non-healing infected wound is an ever-growing global epidemic, with increasing burden of mortality rates and management costs. The problems of chronic wound infections and their outcomes will continue as long as their underlying causes like diabetic wounds grow and spread. Commercial wound therapies employed have limited potential that inhibits pivotal functions and tissue re-epithelialization properties resulting in wound infections. Nanomaterial based drug delivery formulations involving biological macromolecules are developing areas of interest in wound healing applications which are utilized in the re-epithelialization of skin with cost-effective preparations. Research conducted on nanofibers has shown enhanced skin establishment with improved cell proliferation and growth and delivery of bioactive organic molecules at the wound site. However, drug targeted delivery with anti-scarring properties and tissue regeneration aspects have not been updated and discussed in the case of macromolecule impregnated nanofibrous mats. Hence, this review focuses on the brief concepts of wound healing and wound management, therapeutic commercialized wound dressings currently available in the field of wound care, effective electrospun nanofibers impregnated with different biological macromolecules and advancement of nanomaterials for tissue engineering have been discussed. These new findings will pave the way for producing anti-scarring high effective wound scaffolds for drug delivery.
Collapse
Affiliation(s)
- Lakshimipriya Sethuram
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Alka, Verma A, Mishra N, Singh N, Singh P, Nisha R, Pal RR, Saraf SA. Polymeric Gel Scaffolds and Biomimetic Environments for Wound Healing. Curr Pharm Des 2023; 29:3221-3239. [PMID: 37584354 DOI: 10.2174/1381612829666230816100631] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Infected wounds that do not heal are a worldwide problem that is worsening, with more people dying and more money being spent on care. For any disease to be managed effectively, its root cause must be addressed. Effective wound care becomes a bigger problem when various traditional wound healing methods and products may not only fail to promote good healing. Still, it may also hinder the healing process, causing wounds to stay open longer. Progress in tissue regeneration has led to developing three-dimensional scaffolds (3D) or constructs that can be leveraged to facilitate cell growth and regeneration while preventing infection and accelerating wound healing. Tissue regeneration uses natural and fabricated biomaterials that encourage the growth of tissues or organs. Even though the clinical need is urgent, the demand for polymer-based therapeutic techniques for skin tissue abnormalities has grown quickly. Hydrogel scaffolds have become one of the most imperative 3D cross-linked scaffolds for tissue regeneration because they can hold water perfectly and are porous, biocompatible, biodegradable, and biomimetic. For damaged organs or tissues to heal well, the porosity topography of the natural extracellular matrix (ECM) should be imitated. This review details the scaffolds that heal wounds and helps skin tissue to develop. After a brief overview of the bioactive and drug-loaded polymeric hydrogels, the discussion moves on to how the scaffolds are made and what they are made of. It highlights the present uses of in vitro and in-vivo employed biomimetic scaffolds. The prospects of how well bioactiveloaded hydrogels heal wounds and how nanotechnology assists in healing and regeneration have been discussed.
Collapse
Affiliation(s)
- Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
6
|
Lee J, Lee H, Lee M. Physicochemical Properties of Mealworm ( Tenebrio molitor Larva) Oil and its Hypolipidemic Effect as a Replacement for Dietary Saturated Fat in Mice. EUR J LIPID SCI TECH 2022; 124. [DOI: 10.1002/ejlt.202100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/12/2022]
Abstract
AbstractThis study analyzes the physicochemical properties of pressed mealworm (Tenebrio molitor larva) oil (PMO) and evaluates the beneficial effects as a replacement for dietary saturated fat. PMO has high contents of unsaturated fatty acids, such as oleic acid and linoleic acid. PMO has a higher γ‐tocopherol content, brighter yellow color, lower ρ‐anisidine value, and total oxidation value than that of lard or olive oil. The cholesterol content of PMO is lower than that of lard. The quality and stability of PMO are better than those of olive oil and lard. After feeding the mice for 12 weeks a high‐fat diet (45% kcal from fat) by replacing the lard with PMO, the serum lipids (free fatty acid and triglyceride), LDL‐cholesterol, nonHDL‐cholesterol, atherogenic index, and insulin levels are significantly lower than those of the control group. PMO replacement reduces the hepatic lipid contents and lipid droplets compared to the control group, which is mediated by down‐regulating the gene expression of the fatty acid uptake (CD36), lipogenesis transcription factors (PPARγ and ChREBP), and lipid biosynthesis‐related enzymes (SCD1 and FAS). These results suggest that PMO is a good quality oil source with potential as a substitute lipid for saturated animal fat.Practical applications: Although some people are anxious about consuming insects, edible insects are one of the rising alternative food sources. The study suggests that pressed mealworm oil suppresses hyperlipidemia and hepatic steatosis not only by plentiful unsaturated fatty acids but also by affecting the expression of genes related to free fatty acid (FFA) uptake and lipid biosynthesis. The pressed mealworm oil can be successfully used as new edible lipid food ingredients.
Collapse
Affiliation(s)
- Jin Lee
- Department of Food and Nutrition Sunchon National University Suncheon 57922 Republic of Korea
| | - Hae‐In Lee
- Department of Food and Nutrition Sunchon National University Suncheon 57922 Republic of Korea
| | - Mi‐Kyung Lee
- Department of Food and Nutrition Sunchon National University Suncheon 57922 Republic of Korea
| |
Collapse
|
7
|
Hou L, Wang W, Wang MK, Song XS. Acceleration of Healing in Full-Thickness Wound by Chitosan-Binding bFGF and Antimicrobial Peptide Modification Chitosan Membrane. Front Bioeng Biotechnol 2022; 10:878588. [PMID: 35547167 PMCID: PMC9081572 DOI: 10.3389/fbioe.2022.878588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Skin wound healing is an important clinical challenge, and the main treatment points are accelerating epidermal regeneration and preventing infection. Therefore, it is necessary to develop a wound dressing that can simultaneously cure bacterial infections and accelerate wound healing. Here, we report a multifunctional composite wound dressing loaded with chitosan (CS)-binding bFGF (CSBD-bFGF) and antimicrobial peptides (P5S9K). First, CS was used as the dressing matrix material, and P5S9K was encapsulated in CS. Then, CSBD-bFGF was designed by combining recombinant DNA technology and tyrosinase treatment and modified on the dressing material surface. The results show that the binding ability of CSBD-bFGF and CS was significantly improved compared with that of commercial bFGF, and CSBD-bFGF could be controllably released from the CS dressing. More importantly, the prepared dressing material showed excellent antibacterial activity in vivo and in vitro and could effectively inhibit the growth of E. coli and S. aureus. Using NIH3T3 cells as cellular models, the results showed that the CSBD-bFGF@CS/P5S9K composite dressing was a friendly material for cell growth. After cells were seeded on the composite dressing surface, collagen-1 (COL-1) and vascular endothelial growth factor (VEGF) genes expression in cells were significantly upregulated. Finally, the full-thickness wound of the rat dorsal model was applied to analyse the tissue repair ability of the composite dressing. The results showed that the composite dressing containing CSBD-bFGF and P5S9K had the strongest ability to repair skin wounds. Therefore, the CSBD-bFGF@CS/P5S9K composite dressing has good antibacterial and accelerated wound healing abilities and has good application prospects in the treatment of skin wounds.
Collapse
Affiliation(s)
| | | | | | - Xue-Song Song
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|