1
|
Kurćubić VS, Đurović V, Stajić SB, Dmitrić M, Živković S, Kurćubić LV, Mašković PZ, Mašković J, Mitić M, Živković V, Jakovljević V. Multitarget Phytocomplex: Focus on Antibacterial Profiles of Grape Pomace and Sambucus ebulus L. Lyophilisates Against Extensively Drug-Resistant (XDR) Bacteria and In Vitro Antioxidative Power. Antibiotics (Basel) 2024; 13:980. [PMID: 39452246 PMCID: PMC11505505 DOI: 10.3390/antibiotics13100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives: This study was conceived with the aim of translating the experience and knowledge of the research group into the design and creation of multi-active phytocomplex cocktails from lyophilised winery by-products (Grape Pomace-GP) and weeds (Sambucus ebulus L., Dwarf Elder-DE). Methods: Quantification of bioactive molecules was performed by high-performance liquid chromatography (HPLC) method. Results: In the extract obtained from lyophilised GP, the most dominant component that was quantified was petunidin-3-glucoside. Prominent compounds that were quantified in DE extract were cyanidin derivatives. The total number of microorganisms in lyophilisates is low, but some of them still survive lyophilisation. Antibacterial activity was determined by microdilution, the minimum inhibitory concentration (MIC) of the tested bacteria ranged from 0.78 mg/mL to 25.00 mg/mL. Antibacterial susceptibility testing (AST) revealed that Klebsiella spp. and Acinetobacter baumannii complex are extensively drug-resistant (XDR). Conclusions: The GP + DE cocktail showed very strong AB power against both tested XDR bacteria. The total phenolic content and antioxidative effect (determined spectrophotometrically) indicate their linear correlation.
Collapse
Affiliation(s)
- Vladimir S. Kurćubić
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia
| | - Vesna Đurović
- Department of Biology, Microbiological Biotechnology and Plant Protection, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia;
| | - Slaviša B. Stajić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Marko Dmitrić
- Veterinary Specialized Institute “Kraljevo”, Žička 34, 36000 Kraljevo, Serbia; (M.D.); (S.Ž.)
| | - Saša Živković
- Veterinary Specialized Institute “Kraljevo”, Žička 34, 36000 Kraljevo, Serbia; (M.D.); (S.Ž.)
| | - Luka V. Kurćubić
- Department of Medical Microbiology, University Clinical Center of Serbia, Pasterova 2, 11000 Beograd, Serbia;
| | - Pavle Z. Mašković
- Department of Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia; (P.Z.M.); (J.M.)
| | - Jelena Mašković
- Department of Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia; (P.Z.M.); (J.M.)
| | - Milan Mitić
- Faculty of Science and Mathematics in Niš, University of Niš, Višegradska 33, 18000 Niš, Serbia;
| | - Vladimir Živković
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (V.Ž.); (V.J.)
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (V.Ž.); (V.J.)
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| |
Collapse
|
2
|
Rosales-Murillo S, Sánchez-Bodón J, Hernández Olmos S, Ibarra-Vázquez M, Guerrero-Ramírez L, Pérez-Álvarez L, Vilas-Vilela J. Anthocyanin-Loaded Polymers as Promising Nature-Based, Responsive, and Bioactive Materials. Polymers (Basel) 2024; 16:163. [PMID: 38201828 PMCID: PMC10781030 DOI: 10.3390/polym16010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Consequently, reviews devoted to a general overview of these flavonoids have proliferated in recent years. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above cited areas. However, anthocyanin-based polymers have been scarcely reviewed in the literature. Accordingly, this review aims to be a systematic summary of the most recent approaches for the incorporation of anthocyanins into macro-, micro-, or nanostructured polymers. Moreover, this work describes the fundamentals of the applicability of smart anthocyanin-based polymers and offers an updated review of their most interesting applications as sensors, biological regulators, and active materials.
Collapse
Affiliation(s)
- S.S. Rosales-Murillo
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
| | - S.L. Hernández Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - M.F. Ibarra-Vázquez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
- Technological University of Jalisco, Guadalajara 44970, Mexico
| | - L.G. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - L. Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - J.L. Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
3
|
Lin Z, Chen H, Li S, Li X, Wang J, Xu S. Electrospun Food Polysaccharides Loaded with Bioactive Compounds: Fabrication, Release, and Applications. Polymers (Basel) 2023; 15:polym15102318. [PMID: 37242893 DOI: 10.3390/polym15102318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Food polysaccharides are well acclaimed in the field of delivery systems due to their natural safety, biocompatibility with the human body, and capability of incorporating/releasing various bioactive compounds. Electrospinning, a straightforward atomization technique that has been attracting researchers worldwide, is also versatile for coupling food polysaccharides and bioactive compounds. In this review, several popular food polysaccharides including starch, cyclodextrin, chitosan, alginate, and hyaluronic acid are selected to discuss their basic characteristics, electrospinning conditions, bioactive compound release characteristics, and more. Data revealed that the selected polysaccharides are capable of releasing bioactive compounds from as rapidly as 5 s to as prolonged as 15 days. In addition, a series of frequently studied physical/chemical/biomedical applications utilizing electrospun food polysaccharides with bioactive compounds are also selected and discussed. These promising applications include but are not limited to active packaging with 4-log reduction against E. coli, L. innocua, and S. aureus; removal of 95% of particulate matter (PM) 2.5 and volatile organic compounds (VOCs); heavy metal ion removal; increasing enzyme heat/pH stability; wound healing acceleration and enhanced blood coagulation, etc. The broad potentials of electrospun food polysaccharides loaded with bioactive compounds are demonstrated in this review.
Collapse
Affiliation(s)
- Zhenyu Lin
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shengmei Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiaolu Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jie Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Stanciauskaite M, Poskute M, Kurapkiene V, Marksa M, Jakstas V, Ivanauskas L, Kersiene M, Leskauskaite D, Ramanauskiene K. Optimization of Delivery and Bioavailability of Encapsulated Caffeic Acid. Foods 2023; 12:foods12101993. [PMID: 37238812 DOI: 10.3390/foods12101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Caffeic acid is a widely distributed phenolic acid. It is described in the scientific literature that caffeic acid has poor solubility. The aim of this study was to improve the solubility of caffeic acid for better dissolution kinetics when administered orally. During the study, oral capsules of different compositions were modeled. The results of the disintegration test revealed that the excipients affected the disintegration time of the capsules. The excipient hypromellose prolonged the disintegration time and dissolution time of caffeic acid. The dissolution kinetics of caffeic acid from capsules depend on the chosen excipients. P407 was more effective compared to other excipients and positively affected the dissolution kinetics of caffeic acid compared to other excipients. When the capsule contained 25 mg of β-cyclodextrin, 85% of the caffeic acid was released after 60 min. When the capsule contained 25-50 mg poloxamer 407, more than 85.0% of the caffeic acid was released from capsules after 30 min. The research results showed that in order to improve the dissolution kinetics of caffeic acid, one of the important steps is to improve its solubility.
Collapse
Affiliation(s)
- Monika Stanciauskaite
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Monika Poskute
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Vaida Kurapkiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Milda Kersiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| | - Daiva Leskauskaite
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| | - Kristina Ramanauskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
5
|
Šedbarė R, Janulis V, Ramanauskiene K. Formulation and Biopharmaceutical Evaluation of Capsules Containing Freeze-Dried Cranberry Fruit Powder. PLANTS (BASEL, SWITZERLAND) 2023; 12:1397. [PMID: 36987086 PMCID: PMC10057423 DOI: 10.3390/plants12061397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Cranberry fruits are an important source of anthocyanins and anthocyanidins. The aim of the present study was to investigate the effect of excipients on the solubility of cranberry anthocyanins and their dissolution kinetics as well as on the disintegration time of the capsules. Selected excipients (sodium carboxymethyl cellulose, beta-cyclodextrin and chitosan) were found to affect the solubility and release kinetics of anthocyanins in freeze-dried cranberry powder. Capsule formulations N1-N9 had a disintegration time of less than 10 min, and capsule formulation N10 containing 0.200 g of freeze-dried cranberry powder, 0.100 g of Prosolv (combination of microcrystalline cellulose and colloidal silicon dioxide), and 0.100 g of chitosan had a capsule disintegration time of over 30 min. The total amount of anthocyanins released into the acceptor medium ranged from 1.26 ± 0.06 mg to 1.56 ± 0.03 mg. Capsule dissolution test data showed that the time to release into the acceptor medium was statistically significantly longer for the chitosan-containing capsule formulations compared to the control capsules (p < 0.05). Freeze-dried cranberry fruit powder is a potential source of anthocyanin-rich dietary supplements, and the choice of excipient chitosan could be a suitable solution in capsule formulations providing greater anthocyanin stability and modified release in the gastrointestinal tract.
Collapse
Affiliation(s)
- Rima Šedbarė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
| |
Collapse
|