1
|
Yang H, Wang S, Yang L, Liu H. Preparations, application of polysaccharide-protein nanoparticles and their assembly at the oil-water interface. Food Sci Biotechnol 2024; 33:13-22. [PMID: 38186629 PMCID: PMC10767157 DOI: 10.1007/s10068-023-01397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 01/09/2024] Open
Abstract
With the development of nanotechnology, nanoparticles have played an important role in pharmaceuticals, foods and materials, in particular, protein/polysaccharide based composite nanoparticles have received attention from researchers for safety and green production. This paper summarized in detail the preparation methods, applications of protein/polysaccharide nanoparticles (PPNPs) in recent years, especially the mechanism of stabilizing the oil-water interface. Currently, the polysaccharides applied are more traditional, such as chitosan, pectin and carboxymethyl cellulose, so there is still a lot of room for the development of raw materials that can be used to prepare PPNPs. Based on this, we also proposed three promising polysaccharides: seaweed polysaccharide, lycium barbarum polysaccharide and lactobacillus exopolysaccharides, describing their characteristics as well as their application prospects, this article can serve as a reference for interested researchers.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - He Liu
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| |
Collapse
|
2
|
Yu J, Yan Y, Zhang L, Mi J, Yu L, Zhang F, Lu L, Luo Q, Li X, Zhou X, Cao Y. A comprehensive review of goji berry processing and utilization. Food Sci Nutr 2023; 11:7445-7457. [PMID: 38107149 PMCID: PMC10724590 DOI: 10.1002/fsn3.3677] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023] Open
Abstract
Goji berry (wolfberry, Lycium), is a genus of Solanaceae, in which the roots, stems, leaves, and fruits are for both food and medicinal uses. In recent years, the demand for health food and research purposes has led to increasing attention being paid to the application of goji berry nutrients and resources. There are three general strategies to process and utilize the goji berry plant. First, the primary processing of goji berry products, such as dried goji berry pulp, and fruit wine with its by-products. Second, deep processing of sugar-peptides, carotenoids, and the extraction of other efficacy components with their by-products. Third, the utilization of plant-based by-products (roots, stems, leaves, flowers, and fruit residuals). However, the comprehensive use of goji berry is hampered by the non-standardized production technology of resource utilization and the absence of a multi-level co-production and processing technology systems. On the basis of this, we review some novel techniques that are made to more effectively use the resources found in goji berry or its by-products in order to serve as a guide for the thorough use of these resources and the high-quality growth of the goji berry processing industry.
Collapse
Affiliation(s)
- Jing Yu
- College of Light Industry and Food ScienceZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Yamei Yan
- Institute of Wolfberry Engineering and TechnologyNingxia Academy of Agriculture and ForestryYinchuanChina
| | - Lutao Zhang
- Institute of Wolfberry Engineering and TechnologyNingxia Academy of Agriculture and ForestryYinchuanChina
| | - Jia Mi
- Institute of Wolfberry Engineering and TechnologyNingxia Academy of Agriculture and ForestryYinchuanChina
| | - Limei Yu
- College of Light Industry and Food ScienceZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Fengfeng Zhang
- Ningxia Agricultural Products Quality Standards and Testing Technology Research InstituteYinchuanChina
| | - Lu Lu
- Institute of Wolfberry Engineering and TechnologyNingxia Academy of Agriculture and ForestryYinchuanChina
| | - Qing Luo
- Institute of Wolfberry Engineering and TechnologyNingxia Academy of Agriculture and ForestryYinchuanChina
| | - Xiaoying Li
- Institute of Wolfberry Engineering and TechnologyNingxia Academy of Agriculture and ForestryYinchuanChina
| | - Xuan Zhou
- Institute of Wolfberry Engineering and TechnologyNingxia Academy of Agriculture and ForestryYinchuanChina
| | - Youlong Cao
- Institute of Wolfberry Engineering and TechnologyNingxia Academy of Agriculture and ForestryYinchuanChina
| |
Collapse
|
3
|
Zhang X, Miao Q, Pan C, Yin J, Wang L, Qu L, Yin Y, Wei Y. Research advances in probiotic fermentation of Chinese herbal medicines. IMETA 2023; 2:e93. [PMID: 38868438 PMCID: PMC10989925 DOI: 10.1002/imt2.93] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
Chinese herbal medicines (CHM) have been used to cure diseases for thousands of years. However, the bioactive ingredients of CHM are complex, and some CHM natural products cannot be directly absorbed by humans and animals. Moreover, the contents of most bioactive ingredients in CHM are low, and some natural products are toxic to humans and animals. Fermentation of CHM could enhance CHM bioactivities and decrease the potential toxicities. The compositions and functions of the microorganisms play essential roles in CHM fermentation, which can affect the fermentation metabolites and pharmaceutical activities of the final fermentation products. During CHM fermentation, probiotics not only increase the contents of bioactive natural products, but also are beneficial for the host gut microbiota and immune system. This review summarizes the advantages of fermentation of CHM using probiotics, fermentation techniques, probiotic strains, and future development for CHM fermentation. Cutting-edge microbiome and synthetic biology tools would harness microbial cell factories to produce large amounts of bioactive natural products derived from CHM with low-cost, which would help speed up modern CHM biomanufacturing.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Qin Miao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Yulong Yin
- Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources IndustrializationNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
4
|
Yang Y, Li X, Yang Y, Shoaie S, Zhang C, Ji B, Wei Y. Advances in the Relationships Between Cow's Milk Protein Allergy and Gut Microbiota in Infants. Front Microbiol 2021; 12:716667. [PMID: 34484158 PMCID: PMC8415629 DOI: 10.3389/fmicb.2021.716667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cow's milk protein allergy (CMPA) is an immune response to cow's milk proteins, which is one of the most common food allergies in infants and young children. It is estimated that 2-3% of infants and young children have CMPA. The diet, gut microbiota, and their interactions are believed to be involved in the alterations of mucosal immune tolerance, which might lead to the development of CMPA and other food allergies. In this review, the potential molecular mechanisms of CMPA, including omics technologies used for analyzing microbiota, impacts of early microbial exposures on CMPA development, and microbiota-host interactions, are summarized. The probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and other modulation strategies for gut microbiota and the potential application of microbiota-based design of diets for the CMPA treatment are also discussed. This review not only summarizes the current studies about the interactions of CMPA with gut microbiota but also gives insights into the possible CMPA treatment strategies by modulating gut microbiota, which might help in improving the life quality of CMPA patients in the future.
Collapse
Affiliation(s)
- Yudie Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoqi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ying Yang
- Jing’an District Central Hospital of Shanghai, Jing’an Branch, Huashan Hospital, Fudan University, Shanghai, China
| | - Saeed Shoaie
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host-Microbiome Interactions, King’s College London, London, United Kingdom
| | - Cheng Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|