1
|
Adamek K, Jones AMP, Torkamaneh D. Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:1910. [PMID: 39065436 PMCID: PMC11279941 DOI: 10.3390/plants13141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Advancements in micropropagation techniques have made it easier to produce large numbers of cannabis clones, but these methods may also introduce genetic instability over successive generations. This instability often manifests as somaclonal variation, characterized by the progressive accumulation of genetic mutations or epigenetic alterations with each subculture. In this study, we examined how mutations accumulate in cannabis clones subjected to 6-11 subcultures. Using genotyping-by-sequencing, we identified 9405 polymorphic variants across 70 clones. The analysis revealed a correlation between the number of subcultures and the frequency of these mutations, revealing that genetic changes accumulate over successive subcultures despite clones sharing the same chronological age. Furthermore, we evaluated the functional impacts of accumulated mutations, with particular attention to implications on gene function and overall plant health. While rare, 14 high-impact variants were identified in genes that are important for plant development. Notably, six variants were also found in genes related to cannabinoid and terpene synthesis pathways, potentially affecting the plant's biochemical composition. These findings highlight the need for genetic assessments in micropropagation protocols, impacting plant breeding and conservation. Understanding genetic variations in clonally propagated plants optimizes practices for stability. Crucial for cannabis and horticultural plants, it emphasizes techniques to prevent genetic decay and ensure viability.
Collapse
Affiliation(s)
- Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.A.); (A.M.P.J.)
| | | | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Targu M, Debnath S, Kumaria S. Biotechnological approaches for in vitro propagation, conservation and secondary metabolites production in Bulbophyllum, an endangered orchid genus: a review. 3 Biotech 2023; 13:330. [PMID: 37670800 PMCID: PMC10475453 DOI: 10.1007/s13205-023-03750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Bulbophyllum represents the largest genus in the family Orchidaceae. The orchid species of this genus are widely used in the traditional medicine systems in different Asian countries such as China, India, Indonesia and Thailand. Studies on the secondary metabolites of Bulbophyllum have revealed the presence of important phytochemicals such as phenols, flavonoids, alkaloids, tannins, triterpenoids, sesquiterpenoids, steroids and glycosides. Some species of Bulbophyllum are reported to be of horticultural importance for their unique flowers. Habitat destruction and unsustainable utilization of different species of Bulbophyllum have led to a decline in the natural populations. The present review provides insights into the phytochemistry and ethnomedicinal uses of different species of Bulbophyllum, and highlights the biotechnological approaches developed for its conservation and sustainable utilization. Overall, the details provided in the present review can potentially be used for genome editing and biotechnological advances to develop plants with improved traits, which will be essential for the judicious utilization of the Bulbophyllum species so as to conserve and save the populations in the wild.
Collapse
Affiliation(s)
- Mihin Targu
- Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong, Meghalaya 793022 India
| | - Swagata Debnath
- Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong, Meghalaya 793022 India
| | - Suman Kumaria
- Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong, Meghalaya 793022 India
| |
Collapse
|
3
|
Rodrigues MJ, Castañeda-Loaiza V, Fernandes E, Custódio L. A First Approach for the Micropropagation of the Edible and Medicinal Halophyte Inula crithmoides L. PLANTS (BASEL, SWITZERLAND) 2023; 12:2366. [PMID: 37375991 DOI: 10.3390/plants12122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Inula crithmoides L. (golden samphire) is an edible aromatic halophyte species with confirmed nutritional and medicinal properties attributed to the presence of important metabolites, including proteins, carotenoids, vitamins, and minerals. Therefore, this study aimed at establishing a micropropagation protocol for golden samphire that can serve as a nursery approach to its standardized commercial cultivation. For that purpose, a complete regeneration protocol was developed by improving shoot multiplication from nodal explants, rooting, and acclimatization methodologies. The treatment with BAP alone induced the maximum shoot formation (7-7.8 shoots/explant), while IAA treatment increased the shoot height (9.26-9.5 cm). Furthermore, the treatment that coupled best shoot multiplication (7.8 shoots/explant) and highest shoot height (7.58 cm) was MS medium supplemented with 0.25 mg/L BAP. Moreover, all shoots produced roots (100% rooting), and multiplication treatments did not exert significant effect on root length (7.8-9.7 cm/plantlet). Moreover, by the end of the rooting phase, plantlets cultivated with 0.25 mg/L BAP had the highest shoot number (4.2 shoots/plantlet), and plantlets from 0.6 mg/L IAA + 1 mg/L BAP presented the highest shoot height (14.2 cm) similar to control plantlets (14.0 cm). The survival up to the ex-vitro acclimatization stage was increased from 9.8% (control) to 83.3%, when plants were treated with a paraffin solution. Nevertheless, the in vitro multiplication of golden samphire is a promising way for its rapid propagation and can be used as a nursery method, contributing to the development of this species as an alternative food and medicinal crop.
Collapse
Affiliation(s)
- Maria João Rodrigues
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Viana Castañeda-Loaiza
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Eliana Fernandes
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Yuorieva N, Sinetova M, Messineva E, Kulichenko I, Fomenkov A, Vysotskaya O, Osipova E, Baikalova A, Prudnikova O, Titova M, Nosov AV, Popova E. Plants, Cells, Algae, and Cyanobacteria In Vitro and Cryobank Collections at the Institute of Plant Physiology, Russian Academy of Sciences-A Platform for Research and Production Center. BIOLOGY 2023; 12:838. [PMID: 37372123 DOI: 10.3390/biology12060838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Ex situ collections of algae, cyanobacteria, and plant materials (cell cultures, hairy and adventitious root cultures, shoots, etc.) maintained in vitro or in liquid nitrogen (-196 °C, LN) are valuable sources of strains with unique ecological and biotechnological traits. Such collections play a vital role in bioresource conservation, science, and industry development but are rarely covered in publications. Here, we provide an overview of five genetic collections maintained at the Institute of Plant Physiology of the Russian Academy of Sciences (IPPRAS) since the 1950-1970s using in vitro and cryopreservation approaches. These collections represent different levels of plant organization, from individual cells (cell culture collection) to organs (hairy and adventitious root cultures, shoot apices) to in vitro plants. The total collection holdings comprise more than 430 strains of algae and cyanobacteria, over 200 potato clones, 117 cell cultures, and 50 strains of hairy and adventitious root cultures of medicinal and model plant species. The IPPRAS plant cryobank preserves in LN over 1000 specimens of in vitro cultures and seeds of wild and cultivated plants belonging to 457 species and 74 families. Several algae and plant cell culture strains have been adapted for cultivation in bioreactors from laboratory (5-20-L) to pilot (75-L) to semi-industrial (150-630-L) scale for the production of biomass with high nutritive or pharmacological value. Some of the strains with proven biological activities are currently used to produce cosmetics and food supplements. Here, we provide an overview of the current collections' composition and major activities, their use in research, biotechnology, and commercial application. We also highlight the most interesting studies performed with collection strains and discuss strategies for the collections' future development and exploitation in view of current trends in biotechnology and genetic resources conservation.
Collapse
Affiliation(s)
- Natalya Yuorieva
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Maria Sinetova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Ekaterina Messineva
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Irina Kulichenko
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Artem Fomenkov
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Olga Vysotskaya
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Ekaterina Osipova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Angela Baikalova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Olga Prudnikova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Maria Titova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Alexander V Nosov
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Elena Popova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
5
|
Ku SS, Woo HA, Shin MJ, Jie EY, Kim H, Kim HS, Cho HS, Jeong WJ, Lee MS, Min SR, Kim SW. Efficient Plant Regeneration System from Leaf Explant Cultures of Daphne genkwa via Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112175. [PMID: 37299152 DOI: 10.3390/plants12112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to establish an efficient plant regeneration system from leaf-derived embryogenic structure cultures of Daphne genkwa. To induce embryogenic structures, fully expanded leaf explants of D. genkwa were cultured on Murashige and Skoog (MS) medium supplemented with 0, 0.1, 0.5, 1, 2, and 5 mg·L-1 2,4-dichlorophenoxyacetic acid (2,4-D), respectively. After 8 weeks of incubation, the highest frequency of embryogenic structure formation reached 100% when the leaf explants were cultivated on MS medium supplemented with 0.1 to 1 mg·L-1 2,4-D. At higher concentrations of 2,4-D (over 2 mg·L-1 2,4-D), the frequency of embryogenic structure formation significantly declined. Similar to 2,4-D, indole butyric acid (IBA) and α-naphthaleneacetic acid (NAA) treatments were also able to form embryogenic structures. However, the frequency of embryogenic structure formation was lower than that of 2,4-D. In particular, the yellow embryonic structure (YES) and white embryonic structure (WES) were simultaneously developed from the leaf explants of D. genkwa on culture medium containing 2,4-D, IBA, and NAA, respectively. Embryogenic calluses (ECs) were formed from the YES after subsequent rounds of subculture on MS medium supplemented with 1 mg·L-1 2,4-D. To regenerate whole plants, the embryogenic callus (EC) and the two embryogenic structures (YES and WES) were transferred onto MS medium supplemented with 0.1 mg·L-1 6-benzyl aminopurine (BA). The YES had the highest plant regeneration potential via somatic embryo and shoot development compared to the EC and WES. To our knowledge, this is the first successful report of a plant regeneration system via the somatic embryogenesis of D. genkwa. Thus, the embryogenic structures and plant regeneration system of D. genkwa could be applied to mass proliferation and genetic modification for pharmaceutical metabolite production in D. genkwa.
Collapse
Affiliation(s)
- Seong Sub Ku
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun-A Woo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min Jun Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Eun Yee Jie
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - HyeRan Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Moon-Soon Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sung Ran Min
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| |
Collapse
|
6
|
Custódio L, Castagna A, Hernández JA, Magné C, Ben Hamed K. Editorial: Harnessing the sustainable valorization and exploitation of salt tolerant plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1132119. [PMID: 36743491 PMCID: PMC9890190 DOI: 10.3389/fpls.2023.1132119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Luísa Custódio
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - José A. Hernández
- Group of Fruit Trees Biotechnology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| | - Christian Magné
- Géoarchitecture Territoires, Urbanisation, Biodiversité, Environnement, Faculty of Sciences and Techniques, Université de Bretagne Occidentale, Brest, France
| | - Karim Ben Hamed
- Laboratory of Extremophile Plant, Center of Biotechnology of Borj Cedria (CBCC), Hamman-Lif, Tunisia
| |
Collapse
|
7
|
Martinez-Rodriguez A, Beltran-Garcia C, Valdez-Salas B, Santacruz-Ruvalcaba F, Di Mascio P, Beltran-Garcia MJ. Micropropagation of Seed-Derived Clonal Lines of the Endangered Agave marmorata Roezl and Their Compatibility with Endophytes. BIOLOGY 2022; 11:biology11101423. [PMID: 36290326 PMCID: PMC9598202 DOI: 10.3390/biology11101423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary The wild Agave marmorata Roezl has been classified as an endangered species. Extracting these plants from the forest for commercial purposes and long maturation periods of close to 30 years have contributed to their loss. A. marmorata interacts with pollinators and other Agaves species to maintain genetic variability. Thus, the conservation and restoration of the agave ecosystem is an ecological challenge. Typically, agave micropropagation use meristem or leaves as explants to rapidly produce uniform agave plants in age and size on a large scale leading to homogeneous plantations. However, introducing these clones to the field reduces genetic variability. This study evaluated in vitro micropropagation of A. marmorata from seeds to generate clonal lines. The selected seedlings exhibited variations in multiplication capacity and stable tissue formation. Variations in clonal lines could be exploited to produce high-quality plants with different capacities, such as faster propagation, enhanced stress adaptation, and continued growth under nutrient limitation conditions, consequently maintaining genetic variability. Furthermore, some clonal lines were inoculated with four endophytic bacteria to identify other differences among these plants, including endophyte-host compatibility. Variable responses to inoculation were observed among clonal lines. We found that Achromobacter xylosoxidans was compatible, unlike Enterobacter cloacae which caused plant death. Abstract A. marmorata is the raw material used for tepextate mescal production but is classified as an endangered species. In the present study, we obtain and multiply clonal lines of Agave marmorata Roezl by selecting seedlings derived from seeds. Ten seedlings from two lots of 400 germinated seeds were selected for axillary bud proliferation induced by BAP 5 mg/L in vitamin-free Murashige and Skoog’s medium. Differences in shoot numbers, heights and senescent tissue formation were observed. Notably, the AM32 line formed 84 shoots and presented low senescent tissue after 60 d of culture. We also selected the AM31 and AM33 clonal lines. Four-month shoots were extracted with 80% methanol in water to determine the total content of saponins, flavonoids, and phenolic acids and compare the three clonal lines. Some bioactive molecules were identified using HPLC techniques and MALDI-TOF mass spectrometry none showed significant differences in content. Additionally, plants derived from the clonal lines were inoculated with four endophytic bacteria. Among these, Achromobacter xylosoxidans supported plant growth of AM32. A notable effect of plant death was observed after inoculation with Enterobacter cloacae, an endophyte of A. tequilana. Additionally, Pseudomonas aeruginosa, an endophyte from A. marmorata, reduced biomass. Our results demonstrate the incompatibility of A. marmorata to E. cloacae and specialization between the host plant and its endophytes. The compatibility of the plant-endophyte could be exploited to boost the establishment and stability of mutualisms to benefit plant development, stress tolerance and pathogen resistance. The differences in multiplication capacity, stable tissue formation, and endophyte biotization responses may indicate genetic variability. Clonal selection and micropropagation from seed-derived plants could contribute to conserving the endangered A. marmorata plant for reforestation in their natural habitats, thus, assuring mass propagation for sustainable industrial production of mescal, bioactive compounds, and prebiotics.
Collapse
Affiliation(s)
- America Martinez-Rodriguez
- Engineering Institute, Universidad Autónoma de Baja California, Mexicali 21280, Baja California, Mexico
- Lab 309-E Building, Chemistry Department, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico
| | - Celia Beltran-Garcia
- Lab 309-E Building, Chemistry Department, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico
| | - Benjamin Valdez-Salas
- Engineering Institute, Universidad Autónoma de Baja California, Mexicali 21280, Baja California, Mexico
| | - Fernando Santacruz-Ruvalcaba
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45110, Jalisco, Mexico
| | - Paolo Di Mascio
- Departament of Biochemistry, Institute of Chemistry, University of São Paulo, Sao Paulo 05508-000, Brazil
- Correspondence: (P.D.M.); (M.J.B.-G.)
| | - Miguel J. Beltran-Garcia
- Lab 309-E Building, Chemistry Department, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico
- Departamento de Biotecnologicas y Ambientales, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico
- Correspondence: (P.D.M.); (M.J.B.-G.)
| |
Collapse
|
8
|
Custódio L, Slusarczyk S, Matkowski A, Castañeda-Loaiza V, Fernandes E, Pereira C, Rodrigues MJ. A first approach for the micropropagation of the medicinal halophyte Polygonum maritimum L. and phenolic profile of acclimatized plants. FRONTIERS IN PLANT SCIENCE 2022; 13:960306. [PMID: 36110351 PMCID: PMC9468488 DOI: 10.3389/fpls.2022.960306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Polygonum maritimum L. (sea knotgrass) belongs to a genus commonly used in folk medicine to treat inflammation-related disorders. In vitro pharmacological studies have confirmed these properties that were ascribed to bioactive flavonoids, such as myricetin and quercetin glycosides. Therefore, this study aimed at establishing a micropropagation procedure for sea knotgrass for obtaining standardized materials for its potential commercial cultivation. For that, a complete plant regeneration protocol was developed by improving shoot multiplication from nodal explants, rooting and acclimatization procedures, followed by the assessment of the phenolic profile of the in vitro-produced plants. The combination of 3 mg/L 6-benzylaminopurine (BA) + 0.1 mg/L indole-3-acetic acid (IAA) induced the maximum shoot formation (10.3), which was significantly increased from the first to the second cycle (18.3). The best rooting capacity was observed on shoots derived from the control medium (100%), followed by 2 mg/L kinetin (KIN) (97%) and 3 mg/L BA + 0.1 mg/L IAA (90%); however, the shoot number at the end of the rooting phase was higher on shoots derived from 3 mg/L BA + 0.1 mg/L IAA (6.16). The plant growth regulators used in the multiplication phase influenced survival in the acclimatization process, and plants derived from the control medium had the highest survival percentage (63.1%). Acetone extracts made from aerial organs of micropropagated sea knotgrass showed a predominance of the flavonoid myricetin-3-O-rhamnoside (8.135 mg/g). Overall, the halophyte sea knotgrass was successfully micropropagated showing its potential as a medicinal crop for the extraction of bioactive molecules.
Collapse
Affiliation(s)
- Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - Sylwester Slusarczyk
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Wroclaw, Poland
| | - Viana Castañeda-Loaiza
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - Eliana Fernandes
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - Catarina Pereira
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - Maria João Rodrigues
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| |
Collapse
|
9
|
Long Y, Yang Y, Pan G, Shen Y. New Insights Into Tissue Culture Plant-Regeneration Mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:926752. [PMID: 35845646 PMCID: PMC9280033 DOI: 10.3389/fpls.2022.926752] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 05/08/2023]
Abstract
Plant regeneration occurs when plants repair or replace damaged structures based on the totipotency and pluripotency of their cells. Tissue culture is one of the most widely used regenerative technologies. Recently, a series of breakthroughs were made in the study of plant regeneration. This review summarizes two regenerative pathways in tissue culture: somatic embryogenesis and de novo organogenesis. Furthermore, we review the environmental factors influencing plant regeneration from explant sources, basal culture medium, plant growth regulators, and light/dark treatment. Additionally, we analyse the molecular mechanisms underlying two pathways. This knowledge will promote an understanding of the fundamental principles of plant regeneration from precursor cells and lay a solid foundation for applying plant micropropagation and genetic modification.
Collapse
Affiliation(s)
- Yun Long
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Yun Yang
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Special Issue: "James D. McChesney, Vision, Passion and Leadership in the Development of Plant-Derived Natural Products". Molecules 2021; 26:molecules26247415. [PMID: 34946496 PMCID: PMC8707692 DOI: 10.3390/molecules26247415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
|
11
|
Krstić-Milošević D, Banjac N, Janković T, Vinterhalter D, Vinterhalter B. Gentianella lutescens subsp. carpatica J. Holub.: Shoot Propagation In Vitro and Effect of Sucrose and Elicitors on Xanthones Production. PLANTS 2021; 10:plants10081651. [PMID: 34451696 PMCID: PMC8401808 DOI: 10.3390/plants10081651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022]
Abstract
In vitro shoot culture of the endangered medicinal plant Gentianella lutescens was established from epicotyl explants cultured on MS basal medium with 0.2 mg L−1 6-benzylaminopurine (BA) and evaluated for xanthones content for the first time. Five shoot lines were obtained and no significant variations in multiplication rate, shoot elongation, and xanthones profile were found among them. The highest rooting rate (33.3%) was achieved by shoots treated for 2 days with 5 mg L−1 indole-3-butyric acid (IBA) followed by cultivation in liquid PGR-free ½ MS medium for 60 days. HPLC analysis revealed the lower content of xanthones—mangiferin, bellidifolin, demethylbellidifolin, demethylbellidifolin-8-O-glucoside and bellidifolin-8-O-glucoside—in in vitro cultured shoots compared to wild growing plants. The increasing concentration of sucrose, sorbitol and abiotic elicitors salicylic acid (SA), jasmonic acid (JA) and methyl jasmonate (MeJA) altered shoot growth and xanthone production. Sucrose and sorbitol applied at the highest concentration of 233.6 mM increased dry matter percentage, while SA at 100 μM promoted shoot growth 2-fold. The increased sucrose concentration enhanced accumulation of xanthones in shoot cultures 2–3-fold compared to the control shoots. Elicitors at 100–300 μM increased the accumulation of mangiferin, demethylbellidifolin-8-O-glucoside, and bellidifolin-8-O-glucoside almost equally, while MeJA at the highest concentration of 500 μM enhanced amount of aglycones demethylbellidifolin and bellidifolin 7-fold compared to the control. The obtained results facilitate conservation of G. lutescens and pave the way for further research on large-scale shoot propagation and production of pharmacologically active xanthones.
Collapse
Affiliation(s)
- Dijana Krstić-Milošević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (N.B.); (D.V.); (B.V.)
- Correspondence:
| | - Nevena Banjac
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (N.B.); (D.V.); (B.V.)
| | - Teodora Janković
- Insitute for Medicinal Plants Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Dragan Vinterhalter
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (N.B.); (D.V.); (B.V.)
| | - Branka Vinterhalter
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (N.B.); (D.V.); (B.V.)
| |
Collapse
|