1
|
Monteiro E, Baltazar M, Pereira S, Correia S, Ferreira H, Bragança R, Cortez I, Castro I, Gonçalves B. Foliar application of nettle and Japanese knotweed extracts on Vitis vinifera: impact on phenylpropanoid biosynthesis and antioxidant activity during veraison and harvest of cv. Touriga Franca. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4260-4267. [PMID: 38385801 DOI: 10.1002/jsfa.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Plant-based extracts have been recently used as sustainable tools to improve biotic and abiotic stress tolerance and increase grape (Vitis vinifera L.) quality. However, knowledge about the effect of these extracts on secondary metabolism compounds, that are fundamental for grape and wine quality, is still scarce. In this study, a trial was installed in an experimental vineyard with the variety Touriga Franca located at University of Trás-os-Montes e Alto Douro, Baixo Corgo sub-region of the Douro Demarcated Region, Portugal in two growing seasons: 2019 and 2020. The aim was to evaluate the effect of foliar application of nettle (Urtica spp.) extract (NE) and Japanese knotweed (Reynoutria japonica) extract (JKE) on grapevines leaves and berries bioactive compounds contents and antioxidant activity, at veraison and harvest. RESULTS The application of NE increased the total carotenoids in leaves and the total phenolics content and the antioxidant activity (ferric reducing antioxidant power, FRAP) in berries while JKE increased flavonoids content in leaves and the antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH) in berries. CONCLUSION These extracts seem to have a stimulatory effect on grapevine, enhancing bioactive compounds contents and antioxidant capacity and, consequently, the physiological performance of the plant and the quality of the berries. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eliana Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Sofia Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Helena Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | | | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
2
|
Śniegowska J, Biesiada A, Gasiński A. Influence of the Nitrogen Fertilization on the Yield, Biometric Characteristics and Chemical Composition of Stevia rebaudiana Bertoni Grown in Poland. Molecules 2024; 29:1865. [PMID: 38675686 PMCID: PMC11054086 DOI: 10.3390/molecules29081865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Stevia rebaudiana Bertoni is a plant native to South America that has gathered much interest in recent decades thanks to diterpene glycosides, called steviosides, which it produces. These compounds are characterised by their sweetness, which is 250-300 times higher than saccharose, and they contain almost no caloric value. Stevia is currently also grown outside the South American continent, in various countries characterised by warm weather. This research aimed to determine whether it is viable to grow Stevia rebaudiana plants in Poland, a country characterised by a cooler climate than the native regions for stevia plants. Additionally, the impact of adding various dosages and forms of nitrogen fertiliser was analysed. It was determined that Stevia rebaudiana grown in Poland is characterised by a rather low concentration of steviosides, although proper nitrogen fertilisation can improve various characteristics of the grown plants. The addition of 100 kg or 150 kg of nitrogen per hectare of the field in the form of urea or ammonium nitrate increased the yield of the stevia plants. The stevioside content can be increased by applying fertilisation using 100 kg or 150 kg of nitrogen per hectare in the form of ammonium sulfate. The total yield of the stevia plants grown in Poland was lower than the yield typically recorded in warmer countries, and the low concentration of steviosides in the plant suggests that more research about growing Stevia rebaudiana in Poland would be needed to develop profitable methods of stevia cultivation.
Collapse
Affiliation(s)
- Joanna Śniegowska
- Department of Horticulture, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Anita Biesiada
- Department of Horticulture, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Alan Gasiński
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| |
Collapse
|
3
|
Pacyga K, Pacyga P, Boba A, Kozak B, Wolko Ł, Kochneva Y, Michalak I. Potential of Plant-Based Extracts to Alleviate Sorbitol-Induced Osmotic Stress in Cabbage Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:843. [PMID: 38592867 PMCID: PMC10974712 DOI: 10.3390/plants13060843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
In light of expected climate change, it is important to seek nature-based solutions that can contribute to the protection of our planet as well as to help overcome the emerging adverse changes. In an agricultural context, increasing plant resistance to abiotic stress seems to be crucial. Therefore, the scope of the presented research was focused on the application of botanical extracts that exerted positive effects on model plants growing under controlled laboratory conditions, as well as plants subjected to sorbitol-induced osmotic stress. Foliar spraying increased the length and fresh mass of the shoots (e.g., extracts from Taraxacum officinale, Trifolium pratense, and Pisum sativum) and the roots (e.g., Solidago gigantea, Hypericum perforatum, and Pisum sativum) of cabbage seedlings grown under stressful conditions, as well as their content of photosynthetic pigments (Pisum sativum, Lens culinaris, and Hypericum perforatum) along with total phenolic compounds (Hypericum perforatum, Taraxacum officinale, and Urtica dioica). The antioxidant activity of the shoots measured with the use of DDPH (Pisum sativum, Taraxacum officinale, Urtica dioica, and Hypericum perforatum), ABTS (Trifolium pratense, Symphytum officinale, Valeriana officinalis, Pisum sativum, and Lens culinaris), and FRAP (Symphytum officinale, Valeriana officinalis, Urtica dioica, Hypericum perforatum, and Taraxacum officinale) assays was also enhanced in plants exposed to osmotic stress. Based on these findings, the most promising formulation based on Symphytum officinale was selected and subjected to transcriptomic analysis. The modification of the expression of the following genes was noted: Bol029651 (glutathione S-transferase), Bol027348 (chlorophyll A-B binding protein), Bol015841 (S-adenosylmethionine-dependent methyltransferases), Bol009860 (chlorophyll A-B binding protein), Bol022819 (GDSL lipase/esterase), Bol036512 (heat shock protein 70 family), Bol005916 (DnaJ Chaperone), Bol028754 (pre-mRNA splicing Prp18-interacting factor), Bol009568 (heat shock protein Hsp90 family), Bol039362 (gibberellin regulated protein), Bol007693 (B-box-type zinc finger), Bol034610 (RmlC-like cupin domain superfamily), Bol019811 (myb_SHAQKYF: myb-like DNA-binding domain, SHAQKYF class), Bol028965 (DA1-like Protein). Gene Ontology functional analysis indicated that the application of the extract led to a decrease in the expression of many genes related to the response to stress and photosynthetic systems, which may confirm a reduction in the level of oxidative stress in plants treated with biostimulants. The conducted studies showed that the use of innovative plant-based products exerted positive effects on crops and can be used to supplement current cultivation practices.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Aleksandra Boba
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (Y.K.)
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland;
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Horticulture and Bioengineering, Poznan University of Life Sciences, 60-632 Poznań, Poland;
| | - Yelyzaveta Kochneva
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (Y.K.)
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, 50-372 Wrocław, Poland;
| |
Collapse
|
4
|
Godlewska K, Pacyga P, Najda A, Michalak I. Investigation of Chemical Constituents and Antioxidant Activity of Biologically Active Plant-Derived Natural Products. Molecules 2023; 28:5572. [PMID: 37513443 PMCID: PMC10384900 DOI: 10.3390/molecules28145572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this publication is to present rapid screening methods (visual/colorimetric) that will enable quick identification of the presence of biologically active compounds in aqueous solutions. For this reason, 26 plant extracts obtained by ultrasound-assisted extraction were analysed for the content of these compounds. Higher plants, used as a raw material for extraction, are common in Europe and are easily available. The article proposes a comparison of various protocols for the identification of various compounds, e.g., phenolic compounds (phenols, tannins, anthocyanins, coumarins, flavones, flavonoids), vitamin C, quinones, quinines, resins, glycosides, sugars. Initial characterisation of the composition of plant extracts using fast and inexpensive methods allows you to avoid the use of time-consuming analyses with the use of advanced research equipment. In addition, the antioxidant activity of plant extracts using spectrophotometric methods (DPPH, ABTS, FRAP assay) and quantitative analysis of plant hormones such as abscisic acid, benzoic acid, gibberellic acid, indole acetic acid, jasmonic acid, salicylic acid, zeatin, zeatin riboside, and isipentenyl adenine was performed. The obtained results prove that the applied visual methods show different sensitivity in detecting the sought chemical compounds. Therefore, it is necessary to confirm the presence or absence of bioactive substances and their concentration using modern analytical methods.
Collapse
Affiliation(s)
- Katarzyna Godlewska
- Department of Pharmacology and Toxicology, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, The University of Life Science in Lublin, 20-950 Lublin, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, 50-372 Wrocław, Poland
| |
Collapse
|
5
|
Kumari M, Swarupa P, Kesari KK, Kumar A. Microbial Inoculants as Plant Biostimulants: A Review on Risk Status. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010012. [PMID: 36675961 PMCID: PMC9860928 DOI: 10.3390/life13010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Modern agriculture systems are copiously dependent on agrochemicals such as chemical fertilizers and pesticides intended to increase crop production and yield. The indiscriminate use of these chemicals not only affects the growth of plants due to the accumulation of toxic compounds, but also degrades the quality and life-supporting properties of soil. There is a dire need to develop some green approach that can resolve these issues and restore soil fertility and sustainability. The use of plant biostimulants has emerged as an environmentally friendly and acceptable method to increase crop productivity. Biostimulants contain biological substances which may be capable of increasing or stimulating plant growth in an eco-friendly manner. They are mostly biofertilizers that provide nutrients and protect plants from environmental stresses such as drought and salinity. In contrast to the protection of crop products, biostimulants not only act on the plant's vigor but also do not respond to direct actions against pests or diseases. Plant biostimulants improve nutrient mobilization and uptake, tolerance to stress, and thus crop quality when applied to plants directly or in the rhizospheric region. They foster plant growth and development by positively affecting the crop life-cycle starting from seed germination to plant maturity. Legalized application of biostimulants causes no hazardous effects on the environment and primarily provides nutrition to plants. It nurtures the growth of soil microorganisms, which leads to enhanced soil fertility and also improves plant metabolism. Additionally, it may positively influence the exogenous microbes and alter the equilibrium of the microfloral composition of the soil milieu. This review frequently cites the characterization of microbial plant biostimulants that belong to either a high-risk group or are closely related to human pathogens such as Pueudomonas, Klebsiella, Enterobacter, Acinetobacter, etc. These related pathogens cause ailments including septicemia, gastroenteritis, wound infections, inflammation in the respiratory system, meningitis, etc., of varied severity under different conditions of health status such as immunocompromized and comorbidity. Thus it may attract the related concern to review the risk status of biostimulants for their legalized applications in agriculture. This study mainly emphasizes microbial plant biostimulants and their safe application concerns.
Collapse
Affiliation(s)
- Menka Kumari
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand Cheri-Manatu, Kamre, Kanke, Rachi 835222, India
| | - Preeti Swarupa
- Department of Microbiology, Patna Women’s College, Patna 800001, India
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (K.K.K.); (A.K.)
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand Cheri-Manatu, Kamre, Kanke, Rachi 835222, India
- Correspondence: or (K.K.K.); (A.K.)
| |
Collapse
|
6
|
Popa DG, Lupu C, Constantinescu-Aruxandei D, Oancea F. Humic Substances as Microalgal Biostimulants—Implications for Microalgal Biotechnology. Mar Drugs 2022; 20:md20050327. [PMID: 35621978 PMCID: PMC9143693 DOI: 10.3390/md20050327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Humic substances (HS) act as biostimulants for terrestrial photosynthetic organisms. Their effects on plants are related to specific HS features: pH and redox buffering activities, (pseudo)emulsifying and surfactant characteristics, capacity to bind metallic ions and to encapsulate labile hydrophobic molecules, ability to adsorb to the wall structures of cells. The specific properties of HS result from the complexity of their supramolecular structure. This structure is more dynamic in aqueous solutions/suspensions than in soil, which enhances the specific characteristics of HS. Therefore, HS effects on microalgae are more pronounced than on terrestrial plants. The reported HS effects on microalgae include increased ionic nutrient availability, improved protection against abiotic stress, including against various chemical pollutants and ionic species of potentially toxic elements, higher accumulation of value-added ingredients, and enhanced bio-flocculation. These HS effects are similar to those on terrestrial plants and could be considered microalgal biostimulant effects. Such biostimulant effects are underutilized in current microalgal biotechnology. This review presents knowledge related to interactions between microalgae and humic substances and analyzes the potential of HS to enhance the productivity and profitability of microalgal biotechnology.
Collapse
Affiliation(s)
- Daria Gabriela Popa
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Carmen Lupu
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| | - Florin Oancea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| |
Collapse
|
7
|
Kocira S, Szparaga A, Krawczuk A, Bartoš P, Zaguła G, Plawgo M, Černý P. Plant Material as a Novel Tool in Designing and Formulating Modern Biostimulants-Analysis of Botanical Extract from Linum usitatissimum L. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6661. [PMID: 34772188 PMCID: PMC8588437 DOI: 10.3390/ma14216661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Nowadays, researchers are looking into next-generation biostimulants that can be designed as a dedicated agronomic tool based on plant materials. The aim of the present study was to develop a novel biostimulating product, based on plant material in the form of linseed aqueous extracts. The scope of the research included the physicochemical characterization of the product and identification of its biostimulating potential. The study has confirmed that the plant biostimulant derived from L. usitatissimum can be used as a viable agronomic tool for growing soybean. The designed and produced biostimulant is rich in bioactive compounds, including amino acids, free fatty acids, carbohydrates, and micro- and macroelements. The tested biostimulant showed significantly lower values of surface tension in relation to water and a commercial biostimulant. The soybean crops responded to the application of the preparation by improvements in agronomic and morphological levels. The linseed macerates were effective in terms of soybean yields and profitability. Our findings serve as preliminary evidence for the viability of designing and developing novel biostimulants derived from plant materials. This comprehensive approach to designing and formulating novel bioproducts necessitates more extensive and targeted research to fully explain the mechanisms behind the improvements observed in the soybean cultivation.
Collapse
Affiliation(s)
- Sławomir Kocira
- Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Agnieszka Szparaga
- Department of Agrobiotechnology, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland;
- Faculty of Agriculture, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic; (P.B.); (P.Č)
| | - Anna Krawczuk
- Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Petr Bartoš
- Faculty of Agriculture, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic; (P.B.); (P.Č)
| | - Grzegorz Zaguła
- Department of Bioenergetics and Food Analysis, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Michał Plawgo
- ImProvia Sp. z o.o., Strefowa 13, 64-920 Piła, Poland;
| | - Pavel Černý
- Faculty of Agriculture, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic; (P.B.); (P.Č)
- Faculty of Education, University of South Bohemia, Jeronymova 10, 371 15 Ceske Budejovice, Czech Republic
| |
Collapse
|
8
|
Godlewska K, Pacyga P, Michalak I, Biesiada A, Szumny A, Pachura N, Piszcz U. Systematic Investigation of the Effects of Seven Plant Extracts on the Physiological Parameters, Yield, and Nutritional Quality of Radish ( Raphanus sativus var. sativus). FRONTIERS IN PLANT SCIENCE 2021; 12:651152. [PMID: 34220881 PMCID: PMC8248541 DOI: 10.3389/fpls.2021.651152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
The modern agricultural sector faces the challenge of addressing the needs of the fast-growing global population. This process should be both high-yielding and sustainable, without creating risks for the environment and human health. Therefore, natural products are gaining attention in the production of safe and nutritious food. In a systematic effort to develop affordable and effective biostimulants, we examined the impact of botanical extracts on the growth and physiological parameters of radish plants under field conditions. Ultrasound-assisted extraction, mechanical homogenization, and water were used for the production of potential plant-based biostimulants. Foliar applications of the bio-products, developed and used in our study, have led to an increase in the examined parameters (total yield, dry weight, photosynthetic pigments, vitamin C, nitrates, and micro- and macroelements). A decrease in the total phenolic compounds content was also noted, as well as a varied impact on the steam volatile compounds, fatty acids, sterol, and glucosinolates composition. The most beneficial effects on radish, in terms of physiological and biochemical properties, were found in groups treated with extracts based on the common dandelion, valerian, and giant goldenrod. This innovative approach presented in our study could provide a valuable tool for sustainable horticultural production.
Collapse
Affiliation(s)
- Katarzyna Godlewska
- Department of Horticulture, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Paweł Pacyga
- Department of Energy Technologies, Turbines, and Modeling of Heat-Flow Processes, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Anita Biesiada
- Department of Horticulture, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Antoni Szumny
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Natalia Pachura
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Urszula Piszcz
- Department of Plant Nutrition, The Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|