1
|
Sandhu ZA, Raza MA, Alqurashi A, Sajid S, Ashraf S, Imtiaz K, Aman F, Alessa AH, Shamsi MB, Latif M. Advances in the Optimization of Fe Nanoparticles: Unlocking Antifungal Properties for Biomedical Applications. Pharmaceutics 2024; 16:645. [PMID: 38794307 PMCID: PMC11124843 DOI: 10.3390/pharmaceutics16050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, nanotechnology has achieved a remarkable status in shaping the future of biological applications, especially in combating fungal diseases. Owing to excellence in nanotechnology, iron nanoparticles (Fe NPs) have gained enormous attention in recent years. In this review, we have provided a comprehensive overview of Fe NPs covering key synthesis approaches and underlying working principles, the factors that influence their properties, essential characterization techniques, and the optimization of their antifungal potential. In addition, the diverse kinds of Fe NP delivery platforms that command highly effective release, with fewer toxic effects on patients, are of great significance in the medical field. The issues of biocompatibility, toxicity profiles, and applications of optimized Fe NPs in the field of biomedicine have also been described because these are the most significant factors determining their inclusion in clinical use. Besides this, the difficulties and regulations that exist in the transition from laboratory to experimental clinical studies (toxicity, specific standards, and safety concerns) of Fe NPs-based antifungal agents have been also summarized.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Abdulmajeed Alqurashi
- Department of Biology, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Samavia Sajid
- Department of Chemistry, Faculty of Science, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Farhana Aman
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan;
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Monis Bilal Shamsi
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
2
|
Deng H, Wang F, Wu Q, Sun H, Ma J, Ni R, Li Z, Zhang L, Zhang J, Liu M. Novel Multiresistant Osmotin-like Protein from Sweetpotato as a Promising Biofungicide to Control Ceratocystis fimbriata by Destroying Spores through Accumulation of Reactive Oxygen Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1487-1499. [PMID: 38215405 DOI: 10.1021/acs.jafc.3c07663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Osmotin-like proteins (OLPs) play an important role in host-plant defense. In this study, a novel multiresistant OLP (IbOLP1) was screened from sweetpotato (Ipomoea batatas) with a molecular weight of 26.3 kDa. The expression level of IbOLP1 was significantly higher in resistant cultivars than susceptible ones after inoculation with Ceratocystis fimbriata, which causes black rot disease in sweetpotato. The expression of IbOLP1 in Pichia pastoris led to the lysis of yeast cells themselves. The recombinant IbOLP1 displayed antifungal, antibacterial, and antinematode activity and stability. IbOLP1 could restrain the mycelial growth and lyse spores of C. fimbriata, distinctly reducing the incidence of black rot in sweetpotato. The IbOLP1 can trigger the apoptosis of black rot spores by elevating the intracellular levels of reactive oxygen species. Collectively, these findings suggest that IbOLP1 can be used to develop natural antimicrobial resources instead of chemical agents and generate new, disease-resistant germplasm.
Collapse
Affiliation(s)
- Huangyue Deng
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Fangrui Wang
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Qian Wu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Houjun Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu, Xuhuai District, Xuzhou, Jiangsu Province 221131, China
| | - Jukui Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu, Xuhuai District, Xuzhou, Jiangsu Province 221131, China
| | - Rui Ni
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Zongyun Li
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province 250100, China
| | - Jian Zhang
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Meiyan Liu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| |
Collapse
|
3
|
Indu M, Meera B, Sivakumar KC, Mahadevan C, Shafi KM, Nagarathnam B, Sowdhamini R, Sakuntala M. 'Priming' protects Piper nigrum L. from Phytophthora capsici through reinforcement of phenylpropanoid pathway and possible enhancement of Piperine biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1072394. [PMID: 40093588 PMCID: PMC11908380 DOI: 10.3389/fpls.2022.1072394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 03/19/2025]
Abstract
Piper nigrum L. (black pepper), a woody perennial spice crop indigenous to India is positioned at the phylogenetically unique basal lineage of angiosperms. Cultivation of this major spice crop is constrained by rampant fungal and viral infections leading to a lack of disease-free planting material. The major disease that poses severe threat to P. nigrum plantations and nurseries is 'quick wilt' caused by the oomycete Phytophthora capsici, which affects the leaf, stem, spike, collar and root. In this paper, we report the consequence of priming in modulating Piper nigrum defense against Phytophthora capsici. Glycol Chitosan (GC) was used to infiltrate detached leaves of mature P. nigrum plants. It was observed that pre-treatment of GC for 24 hours resulted in significant reduction of disease symptoms in infected leaves, as evidenced by the marked decrease in the size of lesions, and also delayed the appearance of symptoms up to 72 hpi. Experiments repeated in P. nigrum seedlings under controlled growth conditions indicate that delayed disease symptoms of GC pre-treated leaves do not spread to healthy uninfiltrated leaves suggesting a priming-associated systemic defense response. An ROS-mediated manifestation of Hypersensitive Response (HR) induced by Chitosan was also evident in pre-treated leaves. A corresponding visual indication of increased lignification was observed, which correlated with an enhanced lignin content of GC-treated leaves. Enhanced callose deposition was also apparent in GC infiltrated leaves, establishing a stimulatory effect of GC in triggering HR through ROS production, enhanced lignification and callose deposition. Key genes of the core phenylpropanoid and isoprenoid pathways along with major defense signalling pathway genes of P. nigrum, including pathogenesis-related genes and hormone signalling genes showed significant transcript enrichment consequential to GC treatment. A significant quantitative enhancement in Piperine content was evident in GC-infiltrated leaves. The systemic nature of priming on disease protection was established through experiments conducted in rooted cuttings monitored for 30 days after disease infection. This is the first report that provides strong molecular evidence endorsing the twofold advantage of defense priming in P. nigrum by improving crop protection with a concomitant enhancement in Piperine biosynthesis.
Collapse
Affiliation(s)
- M Indu
- Plant Disease Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - B Meera
- Plant Disease Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - K C Sivakumar
- Plant Disease Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | | - K Mohammed Shafi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - B Nagarathnam
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Manjula Sakuntala
- Plant Disease Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
4
|
Nehme R, Diab-Assaf M, Decombat C, Delort L, Caldefie-Chezet F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022; 10:2958. [PMID: 36428526 PMCID: PMC9687473 DOI: 10.3390/biomedicines10112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity and breast cancer are two major health issues that could be categorized as sincere threats to human health. In the last few decades, the relationship between obesity and cancer has been well established and extensively investigated. There is strong evidence that overweight and obesity increase the risk of postmenopausal breast cancer, and adipokines are the central players in this relationship. Produced and secreted predominantly by white adipose tissue, adiponectin is a bioactive molecule that exhibits numerous protective effects and is considered the guardian angel of adipokine. In the obesity-cancer relationship, more and more evidence shows that adiponectin may prevent and protect individuals from developing breast cancer. Recently, several updates have been published on the implication of adiponectin in regulating tumor development, progression, and metastases. In this review, we provide an updated overview of the metabolic signaling linking adiponectin and breast cancer in all its stages. On the other hand, we critically summarize all the available promising candidates that may reactivate these pathways mainly by targeting adiponectin receptors. These molecules could be synthetic small molecules or plant-based proteins. Interestingly, the advances in genomics have made it possible to create peptide sequences that could specifically replace human adiponectin, activate its receptor, and mimic its function. Thus, the obvious anti-cancer activity of adiponectin on breast cancer should be better exploited, and adiponectin must be regarded as a serious biomarker that should be targeted in order to confront this threatening disease.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|