1
|
Miao L, Wang H, Li Y, Huang J, Wang C, Teng H, Xu L, Yang X, Tian Y, Yang G, Li J, Zeng X. Mechanisms and treatments of methamphetamine and HIV-1 co-induced neurotoxicity: a systematic review. Front Immunol 2024; 15:1423263. [PMID: 39224601 PMCID: PMC11366655 DOI: 10.3389/fimmu.2024.1423263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Combination antiretroviral therapy (cART) has dramatically reduced mortality in people with human immunodeficiency virus (HIV), but it does not completely eradicate the virus from the brain. Patients with long-term HIV-1 infection often show neurocognitive impairment, which severely affects the quality of life of those infected. Methamphetamine (METH) users are at a significantly higher risk of contracting HIV-1 through behaviors such as engaging in high-risk sex or sharing needles, which can lead to transmission of the virus. In addition, HIV-1-infected individuals who abuse METH exhibit higher viral loads and more severe cognitive dysfunction, suggesting that METH exacerbates the neurotoxicity associated with HIV-1. Therefore, this review focuses on various mechanisms underlying METH and HIV-1 infection co-induced neurotoxicity and existing interventions targeting the sigma 1 receptor, dopamine transporter protein, and other relevant targets are explored. The findings of this review are envisaged to systematically establish a theoretical framework for METH abuse and HIV-1 infection co-induced neurotoxicity, and to suggest novel clinical treatment targets.
Collapse
Affiliation(s)
- Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yi Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jian Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lisha Xu
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Juan Li
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Xu L, Li L, Chen Q, Huang Y, Chen X, Qiao D. The Role of Non-coding RNAs in Methamphetamine-Induced Neurotoxicity. Cell Mol Neurobiol 2023; 43:2415-2436. [PMID: 36752885 PMCID: PMC11410138 DOI: 10.1007/s10571-023-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Methamphetamine (METH) is an amphetamine-type stimulant that is highly toxic to the central nervous system (CNS). Repeated intake of METH can lead to addiction, which has become a globalized problem, resulting in multiple public health and safety problems. Recently, the non-coding RNA (ncRNA) has been certified to play an essential role in METH addiction through various mechanisms. Herein, we mainly focused on three kinds of ncRNAs including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), which are involved in neurotoxicity effects such as cognitive impairment, behavioral abnormalities, and psychiatric disorders due to METH abuse. In addition, differential expression (DE) ncRNAs also suggest that specific responses and sensitivity to METH neurotoxicity exist in different brain regions and cells. We summarized the relationships between the ncRNAs and METH-induced neurotoxicity and psychiatric disturbances, respectively, hoping to provide new perspectives and strategies for the prevention and treatment of METH abuse. Schematic diagram of the non-coding RNAs (ncRNAs) was involved in methamphetamine (METH)-induced neurotoxicity. The ncRNAs were involved in METH-induced blood-brain barrier disruption, neuronal, astrocyte, and microglial damage, and synaptic neurotransmission impairment. The study of ncRNAs is a hot spot in the future to further understand the neurotoxicity of METH and provide more favorable scientific support for clinical diagnosis and innovation of related treatments.
Collapse
Affiliation(s)
- Luyao Xu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Lingyue Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Qianling Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Yuebing Huang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Xuebing Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| | - Dongfang Qiao
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| |
Collapse
|
3
|
Jayanti S, Dalla Verde C, Tiribelli C, Gazzin S. Inflammation, Dopaminergic Brain and Bilirubin. Int J Mol Sci 2023; 24:11478. [PMID: 37511235 PMCID: PMC10380707 DOI: 10.3390/ijms241411478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine is a well-known neurotransmitter due to its involvement in Parkinson's disease (PD). Dopamine is not only involved in PD but also controls multiple mental and physical activities, such as the pleasure of food, friends and loved ones, music, art, mood, cognition, motivation, fear, affective disorders, addiction, attention deficit disorder, depression, and schizophrenia. Dopaminergic neurons (DOPAn) are susceptible to stressors, and inflammation is a recognized risk for neuronal malfunctioning and cell death in major neurodegenerative diseases. Less is known for non-neurodegenerative conditions. Among the endogenous defenses, bilirubin, a heme metabolite, has been shown to possess important anti-inflammatory activity and, most importantly, to prevent DOPAn demise in an ex vivo model of PD by acting on the tumor necrosis factor-alpha (TNFα). This review summarizes the evidence linking DOPAn, inflammation (when possible, specifically TNFα), and bilirubin as an anti-inflammatory in order to understand what is known, the gaps that need filling, and the hypotheses of anti-inflammatory strategies to preserve dopamine homeostasis with bilirubin included.
Collapse
Affiliation(s)
- Sri Jayanti
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Camilla Dalla Verde
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Claudio Tiribelli
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Silvia Gazzin
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| |
Collapse
|
4
|
Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed Pharmacother 2022; 154:113591. [PMID: 36007276 DOI: 10.1016/j.biopha.2022.113591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Methamphetamine (MA) is a extremely addictive psychostimulant drug with a significant abuse potential. Long-term MA exposure can induce neurotoxic effects through oxidative stress, mitochondrial functional impairment, endoplasmic reticulum stress, the activation of astrocytes and microglial cells, axonal transport barriers, autophagy, and apoptosis. However, the molecular and cellular mechanisms underlying MA-induced neurotoxicity remain unclear. MA abuse increases the chances of developing neurotoxic conditions such as Parkinson's disease (PD), Alzheimer's disease (AD) and other neurotoxic diseases. MA increases the risk of PD by increasing the expression of alpha-synuclein (ASYN). Furthermore, MA abuse is linked to high chances of developing AD and subsequent neurodegeneration due to biological variations in the brain region or genetic and epigenetic variations. To date, there is no Food and Drug Administration (FDA)-approved therapy for MA-induced neurotoxicity, although many studies are being conducted to develop effective therapeutic strategies. Most current studies are now focused on developing therapies to diminish the neurotoxic effects of MA, based on the underlying mechanism of neurotoxicity. This review article highlights current research on several therapeutic techniques targeting multiple pathways to reduce the neurotoxic effects of MA in the brain, as well as the putative mechanism of MA-induced neurotoxicity.
Collapse
|
5
|
Potential Effects of Nrf2 in Exercise Intervention of Neurotoxicity Caused by Methamphetamine Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4445734. [PMID: 35480870 PMCID: PMC9038420 DOI: 10.1155/2022/4445734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Methamphetamine can cause oxidative stress-centered lipid peroxidation, endoplasmic reticulum stress, mitochondrial dysfunction, excitatory neurotoxicity, and neuroinflammation and ultimately lead to nerve cell apoptosis, abnormal glial cell activation, and dysfunction of blood-brain barrier. Protecting nerve cells from oxidative destroy is a hopeful strategy for treating METH use disorder. Nrf2 is a major transcriptional regulator that activates the antioxidant, anti-inflammatory, and cell-protective gene expression through endogenous pathways that maintains cell REDOX homeostasis and is conducive to the survival of neurons. The Nrf2-mediated endogenous antioxidant pathway can also prevent neurodegenerative effects and functional defects caused by METH oxidative stress. Moderate exercise activates this endogenous antioxidant system, which involves in many diseases, including neurodegenerative diseases. Based on evidence from existing literature, we argue that appropriate exercise can play an endogenous antioxidant regulatory role in the Nrf2 signaling pathway to reduce a number of issues caused by METH-induced oxidative stress. However, more experimental evidence is needed to support this idea. In addition, further exploration is necessary about the different effects of various parameters of exercise intervention (such as exercise mode, time, and intensity) on the Nrf2 signaling pathway intervention. Whether there are synergistic effects between exercise and plant-derived Nrf2 activators is worth further investigation.
Collapse
|
6
|
Chen R, Huang P, Wei S, Zhang C, Lai X, Wang H, Tang J. Methamphetamine exposure increases cardiac microvascular permeability by activating the VEGF-PI3K-Akt-eNOS signaling pathway, reversed by Bevacizumab. Hum Exp Toxicol 2022; 41:9603271221121795. [PMID: 35975811 DOI: 10.1177/09603271221121795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methamphetamine (METH) is an illicit amphetamine-like psychostimulant that is commonly abused. However, the modulation of METH-induced cardiac microvascular permeability is still not completely known. Previously, we discovered that the vascular endothelial growth factor (VEGF) regulated the cardiotoxicity produced by METH. In this work, we looked into the effect of METH exposure on cardiac microvascular permeability via the VEGF-PI3K-Akt-eNOS signaling pathway, as well as the efficacy of Bevacizumab treatment in reducing this effect. The findings revealed that METH exposure enhanced cardiac microvascular permeability while also activating the VEGF-PI3K-Akt-eNOS signaling pathway. Furthermore, treatment with Bevacizumab has been shown to be effective in reversing the METH-induced phenomena. Briefly stated, our research may provide fresh insight into the molecular underpinnings of METH-induced cardiac microvascular permeability, and it may also provide evidence for a relationship between METH misuse and Bevacizumab medication.
Collapse
Affiliation(s)
- Rui Chen
- Department of Forensic Medicine, 12453Guangdong Medical University, Dongguan, China
| | - Peng Huang
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, 70570Southern Medical University, Foshan, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, 70570Southern Medical University, Guangzhou, China
| | - Cui Zhang
- School of Forensic Medicine, 70570Southern Medical University, Guangzhou, China
| | - Xiaoping Lai
- Department of Forensic Medicine, 12453Guangdong Medical University, Dongguan, China
| | - Huijun Wang
- School of Forensic Medicine, 70570Southern Medical University, Guangzhou, China
| | - Jianpin Tang
- Department of Forensic Medicine, 12453Guangdong Medical University, Dongguan, China
| |
Collapse
|