1
|
Orhan A, Çiçek ÖF, Öztürk B, Akbayrak H, Ünlükal N, Vatansev H, Solmaz M, Büyükateş M, Aniç S, Ovalı F, Almaghrebi E, Akat F, Vatansev H. The Effects of Colchicum Dispert and Bone Marrow-Derived Mesenchymal Stem Cell Therapy on Skeletal Muscle Injury in a Rat Aortic Ischemia-Reperfusion Model. J Cardiovasc Dev Dis 2024; 11:251. [PMID: 39195159 DOI: 10.3390/jcdd11080251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysms and peripheral artery disease pose significant health risks, ranking third after heart attacks and cerebral strokes. Surgical interventions often involve temporary aortic clamping, leading to ischemia-reperfusion injury and tissue damage. Colchicine and mesenchymal stem cells have shown promise, individually, in mitigating ischemia-reperfusion injury, but their combined effects remain understudied. METHODS This study utilized 42 male Wistar rats, divided into six groups: Control, Sham, Ischemia-Reperfusion, Colchicine, Mesenchymal stem cell, and Mix (colchicine and mesenchymal stem cell). The ischemia-reperfusion model involved clamping the abdominal aorta for 60 min, followed by 120 min of reperfusion. Colchicine and mesenchymal stem cell treatments were administered as pre- and post-ischemia interventions, respectively. Mesenchymal stem cells were cultured, characterized by flow cytometry, and verified for specific surface antigens. Blood and tissue samples were analyzed for oxidative stress markers, nitric oxide metabolites, and apoptosis using TUNEL. RESULTS There were significant differences between the groups in terms of the serum total antioxidant capacity (p < 0.001) and inflammation markers (ischemia-modified albumin, p = 0.020). The combined therapy group (Mix) exhibited the lowest inflammation levels. Arginine levels also showed significant variation (p = 0.028), confirming the ischemia-reperfusion injury model. In muscle tissues, the total antioxidant capacity (p = 0.022), symmetric dimethylarginine, and citrulline levels (p < 0.05) indicated nitric oxide metabolism. Apoptosis was notably high in the ischemia-reperfusion injury group as anticipated. It appeared to be reduced by colchicine, mesenchymal stem cells, and their combination, with the most significant decrease observed in the Mix group (p < 0.001). CONCLUSIONS This study highlights the potential of using combined colchicine and mesenchymal stem cell therapy to reduce muscle damage caused by ischemia-reperfusion injury. Further research is needed to understand the underlying mechanisms and confirm the clinical significance of this approach in treating extremity ischemia-reperfusion injuries.
Collapse
Affiliation(s)
- Atilla Orhan
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Ömer Faruk Çiçek
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Bahadır Öztürk
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hakan Akbayrak
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Nejat Ünlükal
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hakan Vatansev
- Department of Food Processing, Meram Vocational School, Necmettin Erbakan University, Konya 42092, Turkey
| | - Merve Solmaz
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Mustafa Büyükateş
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Seda Aniç
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Fadime Ovalı
- Department of Medical Biochemistry, Institute of Health Sciences, Selçuk University, Konya 42250, Turkey
| | - Eissa Almaghrebi
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Fatma Akat
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hüsamettin Vatansev
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| |
Collapse
|
2
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
3
|
Turska M, Paluszkiewicz P, Turski WA, Parada-Turska J. A Review of the Health Benefits of Food Enriched with Kynurenic Acid. Nutrients 2022; 14:4182. [PMID: 36235834 PMCID: PMC9570704 DOI: 10.3390/nu14194182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, is an endogenous substance produced intracellularly by various human cells. In addition, KYNA can be synthesized by the gut microbiome and delivered in food. However, its content in food is very low and the total alimentary supply with food accounts for only 1-3% of daily KYNA excretion. The only known exception is chestnut honey, which has a higher KYNA content than other foods by at least two orders of magnitude. KYNA is readily absorbed from the gastrointestinal tract; it is not metabolized and is excreted mainly in urine. It possesses well-defined molecular targets, which allows the study and elucidation of KYNA's role in various pathological conditions. Following a period of fascination with KYNA's importance for the central nervous system, research into its role in the peripheral system has been expanding rapidly in recent years, bringing some exciting discoveries. KYNA does not penetrate from the peripheral circulation into the brain; hence, the following review summarizes knowledge on the peripheral consequences of KYNA administration, presents data on KYNA content in food products, in the context of its daily supply in diets, and systematizes the available pharmacokinetic data. Finally, it provides an analysis of the rationale behind enriching foods with KYNA for health-promoting effects.
Collapse
Affiliation(s)
- Monika Turska
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Piotr Paluszkiewicz
- Department of General, Oncological and Metabolic Surgery, Institute of Hematology and Transfusion Medicine, 02-778 Warsaw, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
4
|
The Effect of Thermal Treatment on Selected Properties and Content of Biologically Active Compounds in Potato Crisps. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of this study was to determine the effect of blanching and frying on selected properties of potato crisps of yellow- and purple-fleshed cultivars. The material used was yellow flesh cv. Ismena and purple flesh cv. Provita. Potato slices were blanched (1–5 min at 80–90 °C) and then fried (155–175 °C). The control sample was comprised of crisps that were not blanched. The fat content and color parameters were determined in crisps, while in defatted samples, the following were determined: the content of total polyphenols; antioxidant capacity, measured by the ability to scavenge the ABTS•+ radical cations (TEAC ABTS) and by the FRAP method; and the level of fluorescent intermediary compounds (FICs) and browning index (BI), as indicators of the progress of the Maillard reaction. The content of kynurenic acid (KYNA) was examined in the raw material, in slices, in the water after blanching and in the crisps. Blanching affected the fat absorption, with time being more critical than temperature. The color of crisps from yellow flesh potatoes after blanching lightened, while the color in the purple samples darkened. The content of total polyphenols was higher in purple crisps. Increasing the temperature and shortening the time of blanching increased the polyphenol content and the antioxidant capacity. Blanching decreased the level of FICs, while frying increased FICs. Higher BI values characterized the crisps from cv. Provita. Blanching reduced BI values by 50%, while frying at highest temperature increased these values. The content of KYNA in purple potatoes was almost three times higher than in yellow ones. Blanching and frying decreased the KYNA content in potatoes and fried crisps.
Collapse
|