1
|
Di Biase C, Leitzbach L, Frank A, Zivkovic A, Stark H. Aromatic linker variations in novel dopamine D 2 and D 3 receptor ligands. Arch Pharm (Weinheim) 2024; 357:e2400071. [PMID: 38736025 DOI: 10.1002/ardp.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Dopamine D2-like receptors, especially D2 and D3 receptor subtypes, are important targets of antipsychotic agents. Many of these antipsychotics share an aliphatic linker element between a protonable amine group and an acyl-like moiety. Here, we have modified this aliphatic linker into phenylmethyl and phenylethyl linkers substituted in different positions. The design, synthesis, and in vitro evaluation of 18 dopamine D2 and D3 receptor ligands were performed in this study. Using a radioligand displacement assay, all ligands were found to have modest nanomolar affinity to D2R and D3R. N-(4-{2-[4-(2-Methoxyphenyl)piperazin-1-yl]ethyl}phenyl)acetamide (6c) demonstrates the highest D3R and D2R affinity values (pKi values of 7.83 [D2R] and 8.04 [D3R]), featuring a slight preference to D3R. This derivative can be taken as a reference structure for the development of a new class of D2R and D3R ligands.
Collapse
Affiliation(s)
- Cristian Di Biase
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Luisa Leitzbach
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| |
Collapse
|
2
|
Zha J, He J, Wu C, Zhang M, Liu X, Zhang J. Designing drugs and chemical probes with the dualsteric approach. Chem Soc Rev 2023; 52:8651-8677. [PMID: 37990599 DOI: 10.1039/d3cs00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Traditionally, drugs are monovalent, targeting only one site on the protein surface. This includes orthosteric and allosteric drugs, which bind the protein at orthosteric and allosteric sites, respectively. Orthosteric drugs are good in potency, whereas allosteric drugs have better selectivity and are solutions to classically undruggable targets. However, it would be difficult to simultaneously reach high potency and selectivity when targeting only one site. Also, both kinds of monovalent drugs suffer from mutation-caused drug resistance. To overcome these obstacles, dualsteric modulators have been proposed in the past twenty years. Compared to orthosteric or allosteric drugs, dualsteric modulators are bivalent (or bitopic) with two pharmacophores. Each of the two pharmacophores bind the protein at the orthosteric and an allosteric site, which could bring the modulator with special properties beyond monovalent drugs. In this study, we comprehensively review the current development of dualsteric modulators. Our main effort reason and illustrate the aims to apply the dualsteric approach, including a "double win" of potency and selectivity, overcoming mutation-caused drug resistance, developments of function-biased modulators, and design of partial agonists. Moreover, the strengths of the dualsteric technique also led to its application outside pharmacy, including the design of highly sensitive fluorescent tracers and usage as molecular rulers. Besides, we also introduced drug targets, designing strategies, and validation methods of dualsteric modulators. Finally, we detail the conclusions and perspectives.
Collapse
Affiliation(s)
- Jinyin Zha
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jixiao He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
2-{[4-(4-Bromophenyl)piperazin-1-yl)]methyl}-4-(3-chlorophenyl)-5-(4-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione. MOLBANK 2023. [DOI: 10.3390/m1548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The novel compound 2-{[4-(4-bromophenyl)piperazin-1-yl)]methyl}-4-(3-chlorophenyl-5-(4-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione is obtained in good yield via a three-step protocol. The product’s structure is assigned by HRMS, IR, 1H and 13C NMR experiments.
Collapse
|
4
|
Kim HY, Lee JY, Hsieh CJ, Taylor M, Luedtke RR, Mach RH. Design and Synthesis of Conformationally Flexible Scaffold as Bitopic Ligands for Potent D 3-Selective Antagonists. Int J Mol Sci 2022; 24:432. [PMID: 36613875 PMCID: PMC9820167 DOI: 10.3390/ijms24010432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Previous studies have confirmed that the binding of D3 receptor antagonists is competitively inhibited by endogenous dopamine despite excellent binding affinity for D3 receptors. This result urges the development of an alternative scaffold that is capable of competing with dopamine for binding to the D3 receptor. Herein, an SAR study was conducted on metoclopramide that incorporated a flexible scaffold for interaction with the secondary binding site of the D3 receptor. The alteration of benzamide substituents and secondary binding fragments with aryl carboxamides resulted in excellent D3 receptor affinities (Ki = 0.8-13.2 nM) with subtype selectivity to the D2 receptor ranging from 22- to 180-fold. The β-arrestin recruitment assay revealed that 21c with 4-(pyridine-4-yl)benzamide can compete well against dopamine with the highest potency (IC50 = 1.3 nM). Computational studies demonstrated that the high potency of 21c and its analogs was the result of interactions with the secondary binding site of the D3 receptor. These compounds also displayed minimal effects for other GPCRs except moderate affinity for 5-HT3 receptors and TSPO. The results of this study revealed that a new class of selective D3 receptor antagonists should be useful in behavioral pharmacology studies and as lead compounds for PET radiotracer development.
Collapse
Affiliation(s)
- Ho Young Kim
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Ji Youn Lee
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Chia-Ju Hsieh
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert H. Mach
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Myslivecek J. Dopamine and Dopamine-Related Ligands Can Bind Not Only to Dopamine Receptors. Life (Basel) 2022; 12:life12050606. [PMID: 35629274 PMCID: PMC9147915 DOI: 10.3390/life12050606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
The dopaminergic system is one of the most important neurotransmitter systems in the central nervous system (CNS). It acts mainly by activation of the D1-like receptor family at the target cell. Additionally, fine-tuning of the signal is achieved via pre-synaptic modulation by the D2-like receptor family. Some dopamine drugs (both agonists and antagonists) bind in addition to DRs also to α2-ARs and 5-HT receptors. Unfortunately, these compounds are often considered subtype(s) specific. Thus, it is important to consider the presence of these receptor subtypes in specific CNS areas as the function virtually elicited by one receptor type could be an effect of other—or the co-effect of multiple receptors. However, there are enough molecules with adequate specificity. In this review, we want to give an overview of the most common off-targets for established dopamine receptor ligands. To give an overall picture, we included a discussion on subtype selectivity. Molecules used as antipsychotic drugs are reviewed too. Therefore, we will summarize reported affinities and give an outline of molecules sufficiently specific for one or more subtypes (i.e., for subfamily), the presence of DR, α2-ARs, and 5-HT receptors in CNS areas, which could help avoid ambiguous results.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
| |
Collapse
|
6
|
Egyed A, Kiss DJ, Keserű GM. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Front Pharmacol 2022; 13:847788. [PMID: 35355719 PMCID: PMC8959758 DOI: 10.3389/fphar.2022.847788] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are considered important therapeutic targets due to their pathophysiological significance and pharmacological relevance. Class A receptors represent the largest group of GPCRs that gives the highest number of validated drug targets. Endogenous ligands bind to the orthosteric binding pocket (OBP) embedded in the intrahelical space of the receptor. During the last 10 years, however, it has been turned out that in many receptors there is secondary binding pocket (SBP) located in the extracellular vestibule that is much less conserved. In some cases, it serves as a stable allosteric site harbouring allosteric ligands that modulate the pharmacology of orthosteric binders. In other cases it is used by bitopic compounds occupying both the OBP and SBP. In these terms, SBP binding moieties might influence the pharmacology of the bitopic ligands. Together with others, our research group showed that SBP binders contribute significantly to the affinity, selectivity, functional activity, functional selectivity and binding kinetics of bitopic ligands. Based on these observations we developed a structure-based protocol for designing bitopic compounds with desired pharmacological profile.
Collapse
Affiliation(s)
| | | | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
7
|
Synthesis and evaluation of cyclic diamino benzamide based D3 receptor ligands. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|