1
|
Xu Q, Hu X, Zhong L, Wang Z, Zhao H, Fu J, Cao D, Liu L, Zhang Y, Lang J. Advancements in Noninvasive Volatile Organic Compound Detection: Integrating Stirling Cooling Preconcentration with GC-FID/MS for Quantitative Breath Analysis. ACS OMEGA 2025; 10:13694-13700. [PMID: 40224466 PMCID: PMC11983350 DOI: 10.1021/acsomega.5c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025]
Abstract
The study of volatile organic compounds (VOCs) in exhaled breath presents significant potential for noninvasive disease diagnosis and human exposure monitoring. While thermal desorption (TD) tubes are the most commonly used preconcentration technique for analyzing VOCs in breath, they still face practical challenges, mainly selective adsorption and interference from water vapor in breath samples. This study is the first to develop a method combining Stirling cooling preconcentration technology with gas chromatography-flame ionization detector/mass spectrometry (GC-FID/MS) and a SUMMA canister, enabling simultaneous detection of 116 VOCs. The method requires no refrigerants and effectively addresses the selective adsorption and water vapor interference issues found with TD tubes. Furthermore, nitrogen pressurization is used to dilute the original gas, and calibration curves encompassing various linear ranges are developed to quantify the targeted VOCs across different concentration levels. Finally, we analyzed exhaled breath samples from eight healthy subjects and validated the method. The results showed that the coefficients of determination (R 2) for the linear equations of all target compounds exceeded 0.998, with limits of detection and quantification (LOQ) ranging from 0.01 to 0.09 ppbv and 0.03 to 0.35 ppbv, respectively, and precision within 20%. Accuracy, except for a few substances, was generally between 70% and 130%. This study offers robust technical support for the accurate quantification of VOCs at various concentration levels in exhaled breath.
Collapse
Affiliation(s)
- Qiongdan Xu
- Key Laboratory of
Beijing on Regional Air Pollution Control, College of Environmental
Science and Engineering, Beijing University
of Technology, Beijing 100124, China
| | - Xiaoyu Hu
- Department of Occupational Health, Beijing
Center for Diseases Prevention and Control, Beijing 100013, China
| | - Lei Zhong
- Department of Occupational Health, Beijing
Center for Diseases Prevention and Control, Beijing 100013, China
| | - Zelin Wang
- Department of Occupational Health, Beijing
Center for Diseases Prevention and Control, Beijing 100013, China
| | - Huayong Zhao
- Hangzhou PuYu Technology Development Co.,
Ltd, 2466 Keji Avenue, Hangzhou 311305, China
| | - Jia Fu
- Department of Occupational Health, Beijing
Center for Diseases Prevention and Control, Beijing 100013, China
| | - Dongdong Cao
- Department of Occupational Health, Beijing
Center for Diseases Prevention and Control, Beijing 100013, China
| | - Liu Liu
- Department of Occupational Health, Beijing
Center for Diseases Prevention and Control, Beijing 100013, China
| | - Yan Zhang
- Department of Occupational Health, Beijing
Center for Diseases Prevention and Control, Beijing 100013, China
| | - Jianlei Lang
- Key Laboratory of
Beijing on Regional Air Pollution Control, College of Environmental
Science and Engineering, Beijing University
of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Bobak CA, Stevenson KAJM, Sun N, Khan MS, Azmir J, Beccaria M, Tomko JA, Fillmore D, Scanga CA, Lin PL, Flynn JL, Hill JE. Defining a core breath profile for healthy, non-human primates. Sci Rep 2024; 14:17031. [PMID: 39043722 PMCID: PMC11266492 DOI: 10.1038/s41598-024-64910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Non-human primates remain the most useful and reliable pre-clinical model for many human diseases. Primate breath profiles have previously distinguished healthy animals from diseased, including non-human primates. Breath collection is relatively non-invasive, so this motivated us to define a healthy baseline breath profile that could be used in studies evaluating disease, therapies, and vaccines in non-human primates. A pilot study, which enrolled 30 healthy macaques, was conducted. Macaque breath molecules were sampled into a Tedlar bag, concentrated onto a thermal desorption tube, then desorbed and analyzed by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. These breath samples contained 2,017 features, of which 113 molecules were present in all breath samples. The core breathprint was dominated by aliphatic hydrocarbons, aromatic compounds, and carbonyl compounds. The data were internally validated with additional breath samples from a subset of 19 of these non-human primates. A critical core consisting of 23 highly abundant and invariant molecules was identified as a pragmatic breathprint set, useful for future validation studies in healthy primates.
Collapse
Affiliation(s)
- Carly A Bobak
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
- Department of Biomedical Data Science, Dartmouth Geisel School of Medicine, Lebanon, NH, USA
| | - Keisean A J M Stevenson
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada
| | - Ning Sun
- School of Biomedical Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Mohammad S Khan
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
- Cargill Inc., Wayzata, MN, USA
| | - Jannatul Azmir
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Marco Beccaria
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel Fillmore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Philana L Lin
- Department of Pediatrics, Division of Infectious Disease, Children's Hospital of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jane E Hill
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada.
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.
- School of Biomedical Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
3
|
Malik M, Demetrowitsch T, Schwarz K, Kunze T. New perspectives on 'Breathomics': metabolomic profiling of non-volatile organic compounds in exhaled breath using DI-FT-ICR-MS. Commun Biol 2024; 7:258. [PMID: 38431745 PMCID: PMC10908792 DOI: 10.1038/s42003-024-05943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Breath analysis offers tremendous potential for diagnostic approaches, since it allows for easy and non-invasive sample collection. "Breathomics" as one major research field comprehensively analyses the metabolomic profile of exhaled breath providing insights into various (patho)physiological processes. Recent research, however, primarily focuses on volatile compounds. This is the first study that evaluates the non-volatile organic compounds (nVOCs) in breath following an untargeted metabolomic approach. Herein, we developed an innovative method utilizing a filter-based device for metabolite extraction. Breath samples of 101 healthy volunteers (female n = 50) were analysed using DI-FT-ICR-MS and biostatistically evaluated. The characterisation of the non-volatile core breathome identified more than 1100 metabolites including various amino acids, organic and fatty acids and conjugates thereof, carbohydrates as well as diverse hydrophilic and lipophilic nVOCs. The data shows gender-specific differences in metabolic patterns with 570 significant metabolites. Male and female metabolomic profiles of breath were distinguished by a random forest approach with an out-of-bag error of 0.0099. Additionally, the study examines how oral contraceptives and various lifestyle factors, like alcohol consumption, affect the non-volatile breathome. In conclusion, the successful application of a filter-based device combined with metabolomics-analyses delineate a non-volatile breathprint laying the foundation for discovering clinical biomarkers in exhaled breath.
Collapse
Affiliation(s)
- Madiha Malik
- Department of Clinical Pharmacy, Institute of Pharmacy, Kiel University, Kiel, Germany.
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, Kiel, Germany
| | - Thomas Kunze
- Department of Clinical Pharmacy, Institute of Pharmacy, Kiel University, Kiel, Germany.
| |
Collapse
|
4
|
Hua M, Luo W, Khachatoorian C, McWhirter KJ, Leung S, Martinez T, Talbot P. Exposure, Retention, Exhalation, Symptoms, and Environmental Accumulation of Chemicals During JUUL Vaping. Chem Res Toxicol 2023; 36:492-507. [PMID: 36867872 DOI: 10.1021/acs.chemrestox.2c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Little is known about the chemical exposures that electronic cigarette (EC) users receive and emit during JUUL vaping and if exposures produce symptoms dose dependently. This study examined chemical exposure (dose), retention, symptoms during vaping, and the environmental accumulation of exhaled propylene glycol (PG), glycerol (G), nicotine, and menthol in a cohort of human participants who vaped JUUL "Menthol" ECs. We refer to this environmental accumulation as "EC exhaled aerosol residue" (ECEAR). Chemicals were quantified using gas chromatography/mass spectrometry in JUUL pods before and after use, lab-generated aerosols, human exhaled aerosols, and in ECEAR. Unvaped JUUL "Menthol" pods contained ∼621.3 mg/mL of G, ∼264.9 mg/mL of PG, ∼59.3 mg/mL of nicotine, ∼13.3 mg/mL of menthol, and ∼0.1 mg/mL of the coolant WS-23. Eleven experienced male EC users (aged 21-26) provided exhaled aerosol and residue samples before and after vaping JUUL pods. Participants vaped ad libitum for 20 min, while their average puff count (22 ± 6.4) and puff duration (4.4 ± 2.0) were recorded. The transfer efficiency of nicotine, menthol, and WS-23 from the pod fluid into the aerosol varied with each chemical and was generally similar across flow rates (9-47 mL/s). At 21 mL/s, the average mass of each chemical retained by the participants who vaped 20 min was 53.2 ± 40.3 mg for G, 18.9 ± 14.3 mg for PG, 3.3 ± 2.7 mg for nicotine, and 0.5 ± 0.4 mg for menthol, with retention deduced to be ∼90-100% for each chemical. There was a significant positive relationship between the number of symptoms during vaping and total chemical mass retained. ECEAR accumulated on enclosed surfaces where it could contribute to passive exposure. These data will be valuable to researchers studying human exposure to EC aerosols and agencies that regulate EC products.
Collapse
Affiliation(s)
- My Hua
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Wentai Luo
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon 97201, United States
| | - Careen Khachatoorian
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Kevin J McWhirter
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon 97201, United States
| | - Sara Leung
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Teresa Martinez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Prue Talbot
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
5
|
Schöneich S, Ochoa GS, Monzón CM, Synovec RE. Minimum variance optimized Fisher ratio analysis of comprehensive two-dimensional gas chromatography / mass spectrometry data: Study of the pacu fish metabolome. J Chromatogr A 2022; 1667:462868. [DOI: 10.1016/j.chroma.2022.462868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/25/2022]
|