1
|
Marciniec K, Nowakowska J, Chrobak E, Bębenek E, Latocha M. Synthesis, Docking, and Machine Learning Studies of Some Novel Quinolinesulfonamides-Triazole Hybrids with Anticancer Activity. Molecules 2024; 29:3158. [PMID: 38999109 PMCID: PMC11243625 DOI: 10.3390/molecules29133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
In the presented work, a series of 22 hybrids of 8-quinolinesulfonamide and 1,4-disubstituted triazole with antiproliferative activity were designed and synthesised. The title compounds were designed using molecular modelling techniques. For this purpose, machine-learning, molecular docking, and molecular dynamics methods were used. Calculations of the pharmacokinetic parameters (connected with absorption, distribution, metabolism, excretion, and toxicity) of the hybrids were also performed. The new compounds were synthesised via a copper-catalysed azide-alkyne cycloaddition reaction (CuAAC). 8-N-Methyl-N-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methyl}quinolinesulfonamide was identified in in silico studies as a potential strong inhibitor of Rho-associated protein kinase and as a compound that has an appropriate pharmacokinetic profile. The results obtained from in vitro experiments confirm the cytotoxicity of derivative 9b in four selected cancer cell lines and the lack of cytotoxicity of this derivative towards normal cells. The results obtained from silico and in vitro experiments indicate that the introduction of another quinolinyl fragment into the inhibitor molecule may have a significant impact on increasing the level of cytotoxicity toward cancer cells and indicate a further direction for future research in order to find new substances suitable for clinical applications in cancer treatment.
Collapse
Affiliation(s)
- Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Justyna Nowakowska
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Małgorzata Latocha
- Department of Molecular Biology, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| |
Collapse
|
2
|
Bastaki SM, Abdulrazzaq YM, Zidan MA, Shafiullah M, Alaryani SG, Alnuaimi FA, Adeghate E, Mohsin S, Akour A, Siwek A, Łażewska D, Kieć-Kononowicz K, Sadek B. Reproductive and fetal toxicity studies of histamine H3 receptor antagonist DL76 used in mice to prevent maximal electroshock-induced seizure. Front Pharmacol 2024; 15:1364353. [PMID: 38903994 PMCID: PMC11188305 DOI: 10.3389/fphar.2024.1364353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction: Brain histamine is considered an endogenous anticonvulsant and histamine H1 receptor. H1R antagonists have, in earlier studies, been found to induce convulsions. Moreover, research during the last two decades has provided more information concerning the anticonvulsant activities of histamine H3R (H3R) antagonists investigated in a variety of animal epilepsy models. Methods: Therefore, the in vivo anticonvulsant effect of the H3R antagonist DL76, with proven high in vitro affinity, in vitro selectivity profile, and high in vivo antagonist potency in mice against maximal electroshock (MES)-induced seizures in mice, was assessed. Valproic acid (VPA) was used as a reference antiepileptic drug (AED). In addition, DL76 was tested for its reproductive and fetal toxicity in the same animal species. Results and discussion: Our observations showed that acute systemic administration (intraperitoneal; i.p.) of DL76 (7.5 mg/kg, 15 mg/kg, 30 mg/kg, and 60 mg/kg, i.p.) provided significant and dose-dependent protection against MES-induced seizures in female and male mice. Moreover, the DL76-provided protective effects were comparable to those offered by the VPA and were reversed when animals were co-administered the CNS-penetrant selective H3R agonist R-(α)-methylhistamine (RAM, 10 mg/kg, i.p.). Furthermore, the administration of single (7.5 mg/kg, 15 mg/kg, 30 mg/kg, or 60 mg/kg, i.p.) or multiple doses (3 × 15 mg/kg, i.p.) of H3R antagonist DL76 on gestation days (GD) 8 or 13 failed to affect the maternal body weight of mice when compared with the control mice group. No significant alterations were detected in the average number of implantations and resorptions between the control and DL76-treated groups at the early stages of gestation and the organogenesis period. In addition, no significant differences in the occurrence of skeletal abnormalities, urogenital abnormalities, exencephaly, exomphalos, facial clefts, and caudal malformations were observed. The only significant abnormalities witnessed in the treated groups of mice were in the length of long bones and body length. In conclusion, the novel H3R antagonist DL76 protected test animals against MES-induced seizures and had a low incidence of reproductive and fetal malformation with decreased long bone lengths in vivo, signifying the potential therapeutic value of H3R antagonist DL76 for future preclinical as well as clinical development for use in the management of epilepsy.
Collapse
Affiliation(s)
- Salim M. Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yousef M. Abdulrazzaq
- Department of Paediatrics and Neonatology, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Mohamed Shafiullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saif Ghdayer Alaryani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatima Awad Alnuaimi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Canale V, Czekajewska J, Klesiewicz K, Papież M, Kuziak A, Witek K, Piska K, Niemiec D, Kasza P, Pękala E, Empel J, Tomczak M, Karczewska E, Zajdel P. Design and synthesis of novel arylurea derivatives of aryloxy(1-phenylpropyl) alicyclic diamines with antimicrobial activity against multidrug-resistant Gram-positive bacteria. Eur J Med Chem 2023; 251:115224. [PMID: 36958177 DOI: 10.1016/j.ejmech.2023.115224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
The alarming increase in the resistance of bacteria to the currently available antibiotics necessitates the development of new effective antimicrobial agents that are active against bacterial pathogens causing major public health problems. For this purpose, our in-house libraries were screened against a wide panel of clinically relevant Gram-positive and Gram-negative bacteria, based on which compound I was selected for further optimization. Synthetic efforts in a group of arylurea derivatives of aryloxy(1-phenylpropyl) alicyclic diamines, followed with an in vitro evaluation of the activity against multidrug-resistant strains identified compound 44 (1-(3-chlorophenyl)-3-(1-{3-phenyl-3-[3-(trifluoromethyl)phenoxy] propyl}piperidin-4-yl)urea). Compound 44 showed antibacterial activity against Gram-positive bacteria including fatal drug-resistant strains i.e., Staphylococcus aureus (methicillin-resistant, MRSA; vancomycin-intermediate, VISA) and Enterococcus faecium (vancomycin-resistant, VREfm) at low concentrations (0.78-3.125 μg/mL) comparable to last resort antibiotics (i.e., vancomycin and linezolid). It is also potent against biofilm-forming S. aureus and Staphylococcus epidermidis (including linezolid-resistant, LRSE) strains, but with no activity against Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa). Compound 44 showed strong bactericidal properties against susceptible and drug-resistant Gram-positive bacteria. Depolarization of the bacterial cytoplasmic membrane induced by compound 44 suggests a dissipation of the bacterial membrane potential as its mechanism of antibacterial action. The high antimicrobial activity of compound 44, along with its selectivity over mammalian cells (lung MCR-5 and skin BJ fibroblast cell lines) and no hemolytic properties toward horse erythrocytes, proposes arylurea derivatives of aryloxy(1-phenylpropyl) alicyclic diamines for development of novel antibacterial agents.
Collapse
Affiliation(s)
- Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland.
| | - Joanna Czekajewska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Karolina Klesiewicz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Monika Papież
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Agata Kuziak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Karolina Witek
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Kamil Piska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Dagmara Niemiec
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Patryk Kasza
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Elżbieta Pękala
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Joanna Empel
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, 30/34 Chełmska Street, 00-725, Warsaw, Poland
| | - Magdalena Tomczak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, 30/34 Chełmska Street, 00-725, Warsaw, Poland
| | - Elżbieta Karczewska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| |
Collapse
|
4
|
Canale V, Trybała W, Chaumont-Dubel S, Koczurkiewicz-Adamczyk P, Satała G, Bento O, Blicharz-Futera K, Bantreil X, Pękala E, Bojarski AJ, Lamaty F, Marin P, Zajdel P. 1-(Arylsulfonyl-isoindol-2-yl)piperazines as 5-HT 6R Antagonists: Mechanochemical Synthesis, In Vitro Pharmacological Properties and Glioprotective Activity. Biomolecules 2022; 13:biom13010012. [PMID: 36671397 PMCID: PMC9855333 DOI: 10.3390/biom13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to the canonical Gs adenylyl cyclase pathway, the serotonin type 6 receptor (5-HT6R) recruits additional signaling pathways that control cognitive function, brain development, and synaptic plasticity in an agonist-dependent and independent manner. Considering that aberrant constitutive and agonist-induced active states are involved in various pathological mechanisms, the development of biased ligands with different functional profiles at specific 5-HT6R-elicited signaling pathways may provide a novel therapeutic perspective in the field of neurodegenerative and psychiatric diseases. Based on the structure of SB-258585, an inverse agonist at 5-HT6R-operated Gs and Cdk5 signaling, we designed a series of 1-(arylsulfonyl-isoindol-2-yl)piperazine derivatives and synthesized them using a sustainable mechanochemical method. We identified the safe and metabolically stable biased ligand 3g, which behaves as a neutral antagonist at the 5-HT6R-operated Gs signaling and displays inverse agonist activity at the Cdk5 pathway. Inversion of the sulfonamide bond combined with its incorporation into the isoindoline scaffold switched the functional profile of 3g at Gs signaling with no impact at the Cdk5 pathway. Compound 3g reduced the cytotoxicity of 6-OHDA and produced a glioprotective effect against rotenone-induced toxicity in C8-D1A astrocyte cell cultures. In view of these findings, compound 3g can be considered a promising biased ligand to investigate the role of the 5-HT6R-elicited Gs and Cdk5 signaling pathways in neurodegenerative diseases.
Collapse
Affiliation(s)
- Vittorio Canale
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
- Correspondence:
| | - Wojciech Trybała
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemisty, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Ophélie Bento
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Klaudia Blicharz-Futera
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemisty, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Paweł Zajdel
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
5
|
Zaręba P, Partyka A, Latacz G, Satała G, Zajdel P, Jaśkowska J. New, Eco-Friendly Method for Synthesis of 3-Chlorophenyl and 1,1'-Biphenyl Piperazinylhexyl Trazodone Analogues with Dual 5-HT 1A/5-HT 7 Affinity and Its Antidepressant-like Activity. Molecules 2022; 27:7270. [PMID: 36364104 PMCID: PMC9658223 DOI: 10.3390/molecules27217270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Serotonin 5-HT1A and 5-HT7 receptors play an important role in the pathogenesis and pharmacotherapy of depression. Previously identified N-hexyl trazodone derivatives, 2-(6-(4-(3-chlorophenyl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one hydrochloride (7a·HCl), with high affinity for 5-HT1AR and 2-(6-(4-([1,1'-biphenyl]-2-yl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one hydrochloride (7b·HCl), a dual-acting 5-HT1A/5-HT7 receptor ligand, were prepared with a new microwave-assisted method. The protocol for the synthesis of 7a and 7b involved reductive alkylation under a mild reducing agent. We produced the final compounds with yield of 56-63% using ethanol or 51-56% in solvent-free conditions in 4 min. We then determined the 5-HT7R binding mode for compounds 7a and 7b using in silico methods and assessed the preliminary ADME and safety properties (hepatotoxicity and CYP3A4 inhibition) using in vitro methods for 7a·HCl and 7b·HCl. Furthermore, we evaluated antidepressant-like activity of the dual antagonist of 5-HT1A/5-HT7 receptors (7b·HCl) in the forced swim test (FST) in mice. The 5-HT1AR ligand (7a·HCl) with a much lower affinity for 5-HT7R compared to that of 7b·HCl was tested comparatively. Both compounds showed antidepressant activity, while 5-HT1A/5-HT7 double antagonist 7b·HCl showed a stronger and more specific response.
Collapse
Affiliation(s)
- Przemysław Zaręba
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Paweł Zajdel
- Department of Organic Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland
| | - Jolanta Jaśkowska
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| |
Collapse
|
6
|
Kasza P, Pociecha K, Wójcik-Pszczoła K, Canale V, Wyska E, Zajdel P, Szafrański PW, Cegła M. Ligand assisted CuAAC labelling and RP-HPLC analysis of zidovudine and Retrovir using propargyl-Fmoc probe. Eur J Pharm Sci 2022; 178:106293. [PMID: 36116697 DOI: 10.1016/j.ejps.2022.106293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
The extensive application of zidovudine (ZDV) as a stand-alone anti-HIV drug and a component in antiviral combination therapies, has made its analysis important both in the pharmaceutical and environmental context. The azide group in ZDV structure makes it a ready-to-use substrate for copper-catalyzed azide-alkyne cycloaddition (CuAAC), which is an efficient method for "click chemistry" labeling. In this paper, we describe a ligand-assisted CuAAC procedure for the precolumn derivatization of ZDV. We used propargyl-Fmoc fluorescent label and trans-2-(4-((dimethylamino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexan-1-ol (AMTC) as a copper-binding ligand. We tested the applicability of AMTC for precolumn derivatization and developed chromatographic analytical procedures for ZDV and its formulation (50 mg/5 ml oral solution, Retrovir™ syrup). Our research aimed to improve labeling efficiency with a Cu-chelating ligand, using an accessible and affordable fluorescent probe. We also developed a sustainable mechanochemical synthesis procedure for obtaining propargyl-Fmoc in a gram scale and thus boosted the accessibility of this probe. The advantages of the developed derivatization procedure are its simplicity and easy availability of the propargyl-Fmoc probe. Moreover, the high lipophilicity of the propargyl-Fmoc probe enables efficient separation of the analyte from polar matrix components. In addition, the derivatization procedure can be performed directly on a sample solution. We tested its usability for samples in environmental and biological matrices, including tap water, river water, urine, and human serum.
Collapse
Affiliation(s)
- Patryk Kasza
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Vittorio Canale
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Paweł Zajdel
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Przemysław W Szafrański
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| | - Marek Cegła
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| |
Collapse
|
7
|
Bento O, Luttringer F, El Dine TM, Pétry N, Bantreil X, Lamaty F. Sustainable Mechanosynthesis of Biologically Active Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ophélie Bento
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | | | | | - Nicolas Pétry
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Xavier Bantreil
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Frédéric Lamaty
- IBMM: Institut des Biomolecules Max Mousseron Chemistry 1919 Rte de Mende 34293 Montpellier FRANCE
| |
Collapse
|
8
|
Yang X, Wu C, Su W, Yu J. Mechanochemical C−X/C−H Functionalization: An Alternative Strategy Access to Pharmaceuticals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinjie Yang
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Chongyang Wu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Weike Su
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Jingbo Yu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| |
Collapse
|