1
|
Amen R, Elsayed I, Kim Y, Schueneman GT, El-Giar EM, Hassan EB. A Novel Green In Situ Amine-Functionalized Aerogel UiO-66-NH 2/TOCNF for the Removal of Azo Anionic Dyes. Gels 2025; 11:365. [PMID: 40422384 DOI: 10.3390/gels11050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
UiO-66-NH2 is a metal-organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue is to create a layered porous composite by encasing the MOF within a flexible and structurally robust aerogel substrate using safe, eco-friendly, and green solvents such as ethanol. The fibrous MOF aerogels, characterized by a desirable macroscopic shape of cylindrical block and hierarchical porosity, were synthesized by two approaches: in situ growth of amine-functionalized UiO-66-NH2 crystals on a TEMPO-oxidized cellulose nanofiber (TOCNF) and ex situ crosslinking of UiO-66-NH2 crystals onto a TOCNF network to form UiO-66-NH2/TOCNF. The incorporation of MOF into the cellulose nanofibrils via the in situ method reduces their aggregation potential, alters the nucleation/growth balance to produce smaller MOF crystals, and enhances mechanical flexibility, as evidenced by SEM images. The three adsorbents, including UiO-66-NH2, ex situ UiO-66-NH2/TOCNF, and in situ UiO-66-NH2/TOCNF, were synthesized and used in this study. The effects of pH, time, temperature, and initial concentration were studied. A maximum adsorption capacity (Qmax) of 549.45 mg/g for Congo Red (CR) and 171.23 mg/g for Orange II (ORII) was observed at pH 6, using 10 mg of in situ UiO-66-NH2/TOCNF at 40 °C with a contact time of 75 min for CR and 2 h for ORII. The adsorption of both dyes primarily occurs through monolayer chemisorption on the in situ UiO-66-NH2/TOCNF. The main removal mechanisms were hydrogen bonding and surface complexation. The noteworthy adsorption capacity of in situ UiO-66-NH2/TOCNF coupled with environment-friendly fabrication techniques indicates its potential applications on a large scale in real wastewater systems.
Collapse
Affiliation(s)
- Rabia Amen
- Department of Sustainable Bioproducts, Mississippi State University, P.O. Box 9820, Mississippi State, MS 39762, USA
| | - Islam Elsayed
- Department of Sustainable Bioproducts, Mississippi State University, P.O. Box 9820, Mississippi State, MS 39762, USA
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Yunsang Kim
- Department of Sustainable Bioproducts, Mississippi State University, P.O. Box 9820, Mississippi State, MS 39762, USA
| | | | - Emad M El-Giar
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - El Barbary Hassan
- Department of Sustainable Bioproducts, Mississippi State University, P.O. Box 9820, Mississippi State, MS 39762, USA
| |
Collapse
|
2
|
Hazarika G, Ingole PG. Nano-enabled gas separation membranes: Advancing sustainability in the energy-environment Nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173264. [PMID: 38772493 DOI: 10.1016/j.scitotenv.2024.173264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Gas separation membranes serve as crucial to numerous industrial processes, including gas purification, energy production, and environmental protection. Recent advancements in nanomaterials have drastically revolutionized the process of developing tailored gas separation membranes, providing unreachable levels of control over the performance and characteristics of the membrane. The incorporation of cutting-edge nanomaterials into the composition of traditional polymer-based membranes has provided novel opportunities. This review critically analyses recent advancements, exploring the diverse types of nanomaterials employed, their synthesis techniques, and their integration into membrane matrices. The impact of nanomaterial incorporation on separation efficiency, selectivity, and structural integrity is evaluated across various gas separation scenarios. Furthermore, the underlying mechanisms behind nanomaterial-enhanced gas transport are examined, shedding light on the intricate interactions between nanoscale components and gas molecules. The review also discusses potential drawbacks and considerations associated with nanomaterial utilization in membrane development, including scalability and long-term stability. This review article highlights nanomaterials' significant impact in revolutionizing the field of selective gas separation membranes, offering the potential for innovation and future directions in this ever-evolving sector.
Collapse
Affiliation(s)
- Gauri Hazarika
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
3
|
Feng W, Hu Y, Wang M, Liu LY. Highly Defective Zirconium-Based Metal-Organic Frameworks for the Efficient Adsorption and Detection of Sugar Phosphates in the Biological Sample. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37641-37655. [PMID: 38991175 DOI: 10.1021/acsami.4c06870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Enrichment and quantification of sugar phosphates (SPx) in biological samples were of great significance in biological medicine. In this work, a series of zirconium-based metal-organic frameworks (MOFs) with different degrees of defects, namely, HP-UiO-66-NH2-X, were synthesized using acetic acid as a modulator and were utilized as high-capacity adsorbents for the adsorption of SPx in biological samples. The results indicated that the addition of acetic acid altered the morphology of HP-UiO-66-NH2-X, with corresponding changes in pore size (3.99-9.28 nm) and specific surface area (894.44-1142.50 m2·g-1). HP-UiO-66-NH2-10 showed the outstanding performance by achieving complete adsorption of all four SPx using only 80 μg of the adsorbent. The excellent adsorption efficiency of HP-UiO-66-NH2-10 was also obtained with a wide pH range and short adsorption time (10 min). Adsorption experiments demonstrated that the adsorption process involved chemical adsorption and multilayer adsorption. By utilizing X-ray photoelectron spectroscopy and density functional theory to explain the adsorption mechanism, it was found that various interactions (including coordination, hydrogen bonding, and electrostatic interactions) collectively contributed to the exceptional adsorption capability of HP-UiO-66-NH2-10. Those results indicated that the defect strategy not only increased the specific surface area and pore size, providing additional adsorption sites, but also reduced the adsorption energy between HP-UiO-66-NH2-10 and SPx. Moreover, HP-UiO-66-NH2-10 showed a low limit of detection (0.001-0.01 ng·mL-1), high precision (<13.77%), and accuracy (80.10-111.83%) in serum, liver, and cells, good stability, high selectivity (SPx/glucose, 1:100 molar ratio), and high adsorption capacity (292 mg·g-1 for SPx). The practical detection of SPx from human serum was also verified, prefiguring the great potentials of defective zirconium-based MOFs for the enrichment and detection of SPx in the biological medicine.
Collapse
Affiliation(s)
- Wanfang Feng
- Department of Sanitary Inspection, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yuyan Hu
- Department of Sanitary Inspection, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Maoqing Wang
- Department of Sanitary Inspection, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Li-Yan Liu
- Department of Sanitary Inspection, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150086, Heilongjiang, China
| |
Collapse
|
4
|
de Koning MC, Dadon L, Rozing LCM, van Grol M, Bross R. High Capacity Adsorption and Degradation of a Nerve Agent Simulant and a Pesticide by a Nickel Pyrazolate Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55877-55884. [PMID: 37983091 DOI: 10.1021/acsami.3c13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The development of materials that enable the efficient removal of toxic compounds is important for the improvement of current protective materials or decontamination technologies. Current materials rely either on agent removal by adsorption or by effecting (catalytic) degradation. Ideally, both of these mechanisms are combined in a single material in order to target a more broad spectrum of toxic agents and to improve the performance of the materials. Recent attempts to combine materials with either adsorptive or catalytic properties into a composite material are promising, although the overall performance often suffers from competition for the agent between the adsorptive and catalytic domains in the composites. In this work, we propose that metal-organic frameworks (MOFs) could feature both adsorptive properties as well as catalytic properties in a single structural domain, thereby avoiding a reduction in the overall performance originating from competitive agent interactions. We showcase this concept using the MOF Ni3(BTP)2, which exhibits strong affinity and high capacity for the storage of a nerve agent simulant and a pesticide. Moreover, it is demonstrated that the adsorbed agents are efficiently degraded and that the nontoxic degradation products are rapidly expelled from the MOF pores. Its ability to catalyze the hydrolytic degradation of both organophosphate and organophosphorothioate compounds highlights another unique feature of this material. The presented concept illustrates the feasibility for developing materials that target a broader spectrum of agents via adsorption, catalysis, or both and by their broader reactivity toward different types of agents.
Collapse
Affiliation(s)
- Martijn C de Koning
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Linn Dadon
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Laura C M Rozing
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Marco van Grol
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Rowdy Bross
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| |
Collapse
|