1
|
Coanda M, Limban C, Draghici C, Ciobanu AM, Grigore GA, Popa M, Stan M, Larion C, Avram S, Mares C, Ciornei MC, Dabu A, Hudita A, Galateanu B, Pintilie L, Nuta DC. Current Perspectives on Biological Screening of Newly Synthetised Sulfanilamide Schiff Bases as Promising Antibacterial and Antibiofilm Agents. Pharmaceuticals (Basel) 2024; 17:405. [PMID: 38675368 PMCID: PMC11053482 DOI: 10.3390/ph17040405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Growing resistance to antimicrobials, combined with pathogens that form biofilms, presents significant challenges in healthcare. Modifying current antimicrobial agents is an economical approach to developing novel molecules that could exhibit biological activity. Thus, five sulfanilamide Schiff bases were synthesized under microwave irradiation and characterized spectroscopically and in silico. They were evaluated for their antimicrobial and antibiofilm activities against both Gram-positive and Gram-negative bacterial strains. Their cytotoxic potential against two cancer cell lines was also determined. Gram-positive bacteria were susceptible to the action of these compounds. Derivatives 1b and 1d inhibited S. aureus's growth (MIC from 0.014 mg/mL) and biofilm (IC from 0.029 mg/mL), while compound 1e was active against E. faecalis's planktonic and sessile forms. Two compounds significantly reduced cell viability at 5 μg/mL after 24 h of exposure (1d-HT-29 colorectal adenocarcinoma cells, 1c-LN229 glioblastoma cells). A docking study revealed the increased binding affinities of these derivatives compared to sulfanilamide. Hence, these Schiff bases exhibited higher activity compared to their parent drug, with halogen groups playing a crucial role in both their antimicrobial and cytotoxic effects.
Collapse
Affiliation(s)
- Maria Coanda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (M.C.); (D.C.N.)
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (M.C.); (D.C.N.)
| | - Constantin Draghici
- Costin D. Nenitzescu Institute of Organic and Supramolecular Chemistry, 202 B Splaiul Independentei, 060023 Bucharest, Romania;
| | - Anne-Marie Ciobanu
- Department of Drug Control, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania;
| | - Georgiana Alexandra Grigore
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania; (G.A.G.); (M.P.); (M.S.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, Șoseaua Panduri 90, 050663 Bucharest, Romania; (C.L.); (A.H.); (B.G.)
- National Institute Research and Development for Biological Sciences, Splaiul Independenței 296, 060031 Bucharest, Romania
| | - Marcela Popa
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania; (G.A.G.); (M.P.); (M.S.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, Șoseaua Panduri 90, 050663 Bucharest, Romania; (C.L.); (A.H.); (B.G.)
| | - Miruna Stan
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania; (G.A.G.); (M.P.); (M.S.)
| | - Cristina Larion
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, Șoseaua Panduri 90, 050663 Bucharest, Romania; (C.L.); (A.H.); (B.G.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (S.A.); (C.M.)
| | - Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (S.A.); (C.M.)
| | - Mariana-Catalina Ciornei
- Physiology Department, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Aura Dabu
- Neurosurgery Department 1, The University Emergency Hospital of Bucharest, Splaiul Independenței 169, 050098 Bucharest, Romania;
| | - Ariana Hudita
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania; (G.A.G.); (M.P.); (M.S.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, Șoseaua Panduri 90, 050663 Bucharest, Romania; (C.L.); (A.H.); (B.G.)
| | - Bianca Galateanu
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania; (G.A.G.); (M.P.); (M.S.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, Șoseaua Panduri 90, 050663 Bucharest, Romania; (C.L.); (A.H.); (B.G.)
| | - Lucia Pintilie
- National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania;
| | - Diana Camelia Nuta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (M.C.); (D.C.N.)
| |
Collapse
|
2
|
Vlad IM, Nuță DC, Căproiu MT, Dumitrașcu F, Kapronczai E, Mük GR, Avram S, Niculescu AG, Zarafu I, Ciorobescu VA, Brezeanu AM, Limban C. Synthesis and Characterization of New N-acyl Hydrazone Derivatives of Carprofen as Potential Tuberculostatic Agents. Antibiotics (Basel) 2024; 13:212. [PMID: 38534647 DOI: 10.3390/antibiotics13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
N-acyl hydrazone (NAH) is recognized as a promising framework in drug design due to its versatility, straightforward synthesis, and attractive range of biological activities, including antimicrobial, antitumoral, analgesic, and anti-inflammatory properties. In the global context of increasing resistance of pathogenic bacteria to antibiotics, NAHs represent potential solutions for developing improved treatment alternatives. Therefore, this research introduces six novel derivatives of (EZ)-N'-benzylidene-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide, synthesized using a microwave-assisted method. In more detail, we joined two pharmacophore fragments in a single molecule, represented by an NSAID-type carprofen structure and a hydrazone-type structure, obtaining a new series of NSAID-N-acyl hydrazone derivatives that were further characterized spectrally using FT-IR, NMR, and HRMS investigations. Additionally, the substances were assessed for their tuberculostatic activity by examining their impact on four strains of M. tuberculosis, including two susceptible to rifampicin (RIF) and isoniazid (INH), one susceptible to RIF and resistant to INH, and one resistant to both RIF and INH. The results of our research highlight the potential of the prepared compounds in fighting against antibiotic-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, 020956 Bucharest, Romania
| | - Diana Camelia Nuță
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, 020956 Bucharest, Romania
| | - Miron Theodor Căproiu
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - Florea Dumitrașcu
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - Eleonóra Kapronczai
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany János, 400028 Cluj-Napoca, Romania
| | - Georgiana Ramona Mük
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania
- "St. Stephen's" Pneumoftiziology Hospital, Șos. Ștefan cel Mare 11, 020122 Bucharest, Romania
| | - Speranta Avram
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania
| | - Adelina Gabriela Niculescu
- Research Institute of the University of Bucharest, Sos. Panduri 90-92, 050095 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Irina Zarafu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta, 030018 Bucharest, Romania
| | - Vanesa Alexandra Ciorobescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, 020956 Bucharest, Romania
| | - Ana Maria Brezeanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, 020956 Bucharest, Romania
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, 020956 Bucharest, Romania
| |
Collapse
|
3
|
Coandă M, Limban C, Nuță DC. Small Schiff Base Molecules-A Possible Strategy to Combat Biofilm-Related Infections. Antibiotics (Basel) 2024; 13:75. [PMID: 38247634 PMCID: PMC10812491 DOI: 10.3390/antibiotics13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored. Thus, the objective of this article is to present a comprehensive overview of the existing scientific literature pertaining to small molecules categorized as Schiff bases with antibiofilm properties. The survey involved querying four databases (Web of Science, ScienceDirect, Scopus and Reaxys). Relevant articles published in the last 10 years were selected and categorized based on the molecular structure into two groups: classical Schiff bases and oximes and hydrazones. Despite the majority of studies indicating a moderate antibiofilm potential of Schiff bases, certain compounds exhibited a noteworthy effect, underscoring the significance of considering this type of molecular modeling when seeking to develop new molecules with antibiofilm effects.
Collapse
Affiliation(s)
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (M.C.); (D.C.N.)
| | | |
Collapse
|
4
|
Şahin İ. SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASES CONTAINING 1,2,3-TRIAZOLE UNIT: PHOTOPHYSICAL AND ACETYL CHOLINE (AChE) INHIBITORY PROPERTIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Achi PA, Coulibali S, Molou KYG, Coulibaly S, Kouassi S, Sissouma D, Ouattara L, Ané A. Stereochemical design and conformation determinations of new benzimidazole-N-acylhydrazone derivatives. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2084417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Patrick-Armand Achi
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Siomenan Coulibali
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Kouassi Yves Guillaume Molou
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Souleymane Coulibaly
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Signo Kouassi
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Drissa Sissouma
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Lassiné Ouattara
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Adjou Ané
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| |
Collapse
|
6
|
In Silico and Experimental Investigation of the Biological Potential of Some Recently Developed Carprofen Derivatives. Molecules 2022; 27:molecules27092722. [PMID: 35566083 PMCID: PMC9101252 DOI: 10.3390/molecules27092722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
The efficient regioselective bromination and iodination of the nonsteroidal anti-inflammatory drug (NSAID) carprofen were achieved by using bromine and iodine monochloride in glacial acetic acid. The novel halogenated carprofen derivatives were functionalized at the carboxylic group by esterification. The regioselectivity of the halogenation reaction was evidenced by NMR spectroscopy and confirmed by X-ray analysis. The compounds were screened for their in vitro antibacterial activity against planktonic cells and also for their anti-biofilm effect, using Gram-positive bacteria (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). The cytotoxic activity of the novel compounds was tested against HeLa cells. The pharmacokinetic and pharmacodynamic profiles of carprofen derivatives, as well as their toxicity, were established by in silico analyses.
Collapse
|