1
|
M S, Y I, N I, S MZ. Synergistic suppression of cell growth: Phenmiazine derivatives targeting p53 and MDM2 unveiled through hybrid computational method. Comput Biol Chem 2025; 115:108344. [PMID: 39824144 DOI: 10.1016/j.compbiolchem.2025.108344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/20/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Lung cancer is the leading cause of mortality in both men and women due to genetic and epigenetic modifications. Our study focuses on fabricating phenmiazine ring leads by a functional group-based drug design to inhibit p53 -7A1W and MDM2-7AU9 proteins responsible for cancer cell growth. One hundred molecules are designed and allowed to bind inside the active site of 7A1W and 7AU9 protein using a glide dock platform and subjected to find MMGBSA. The stability and interaction were confirmed by MD simulation analysis at 100 ns and DFTB chemical stability study. The result gave the best binding energy of -8.16 kcal/mol for aminobenzoic acid substituted molecule and the MD simulation head map illustrates that majorly 9 amino acids form hydrophobic and h-bond interactions. DFTB analysis reveals the energy gaps of 0.0508 signifying stability and lower chemical reactivity of the Phenmiazine ring derivatives. These findings conclude that the Phenmiazine ring derivative will be a better lead molecule to eradicate lung cancer.
Collapse
Affiliation(s)
- Srinivasan M
- Crescent School of Pharmacy. B.S Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ismail Y
- Crescent School of Pharmacy. B.S Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Irfan N
- Crescent School of Pharmacy. B.S Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | | |
Collapse
|
2
|
Chen L, Mao W, Ren C, Li J, Zhang J. Comprehensive Insights that Targeting PIM for Cancer Therapy: Prospects and Obstacles. J Med Chem 2024; 67:38-64. [PMID: 38164076 DOI: 10.1021/acs.jmedchem.3c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proviral integration sitea for Moloney-murine leukemia virus (PIM) kinases are a family of highly conserved serine/tyrosine kinases consisting of three members, PIM-1, PIM-2, and PIM-3. These kinases regulate a wide range of substrates through phosphorylation and affect key cellular processes such as transcription, translation, proliferation, apoptosis, and energy metabolism. Several PIM inhibitors are currently undergoing clinical trials, such as a phase I clinical trial of Uzanserti (5) for the treatment of relapsed diffuse large B-cell lymphoma that has been completed. The current focus encompasses the structural and biological characterization of PIM, ongoing research progress on small-molecule inhibitors undergoing clinical trials, and evaluation analysis of persisting challenges in this field. Additionally, the design and discovery of small-molecule inhibitors targeting PIM in recent years have been explored, with a particular emphasis on medicinal chemistry, aiming to provide valuable insights for the future development of PIM inhibitors.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Wuyu Mao
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, Sichuan, China
| | - Jinqi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
3
|
Almukadi H, Jadkarim GA, Mohammed A, Almansouri M, Sultana N, Shaik NA, Banaganapalli B. Combining machine learning and structure-based approaches to develop oncogene PIM kinase inhibitors. Front Chem 2023; 11:1137444. [PMID: 36970406 PMCID: PMC10036574 DOI: 10.3389/fchem.2023.1137444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction: PIM kinases are targets for therapeutic intervention since they are associated with a number of malignancies by boosting cell survival and proliferation. Over the past years, the rate of new PIM inhibitors discovery has increased significantly, however, new generation of potent molecules with the right pharmacologic profiles were in demand that can probably lead to the development of Pim kinase inhibitors that are effective against human cancer.Method: In the current study, a machine learning and structure based approaches were used to generate novel and effective chemical therapeutics for PIM-1 kinase. Four different machine learning methods, namely, support vector machine, random forest, k-nearest neighbour and XGBoost have been used for the development of models. Total, 54 Descriptors have been selected using the Boruta method.Results: SVM, Random Forest and XGBoost shows better performance as compared to k-NN. An ensemble approach was implemented and, finally, four potential molecules (CHEMBL303779, CHEMBL690270, MHC07198, and CHEMBL748285) were found to be effective for the modulation of PIM-1 activity. Molecular docking and molecular dynamic simulation corroborated the potentiality of the selected molecules. The molecular dynamics (MD) simulation study indicated the stability between protein and ligands.Discussion: Our findings suggest that the selected models are robust and can be potentially useful for facilitating the discovery against PIM kinase.
Collapse
Affiliation(s)
- Haifa Almukadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gada Ali Jadkarim
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Majid Almansouri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasreen Sultana
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
- *Correspondence: Noor Ahmad Shaik, ; Nasreen Sultana, ; Babajan Banaganapalli,
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Noor Ahmad Shaik, ; Nasreen Sultana, ; Babajan Banaganapalli,
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Noor Ahmad Shaik, ; Nasreen Sultana, ; Babajan Banaganapalli,
| |
Collapse
|
4
|
Lavogina D, Nasirova N, Sõrmus T, Tähtjärv T, Enkvist E, Viht K, Haljasorg T, Herodes K, Jaal J, Uri A. Conjugates of adenosine mimetics and arginine-rich peptides serve as inhibitors and fluorescent probes but not as long-lifetime photoluminescent probes for protein arginine methyltransferases. J Pept Sci 2023; 29:e3456. [PMID: 36208424 DOI: 10.1002/psc.3456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The conjugates of an adenosine mimetic and oligo-l-arginine or oligo-d-arginine (ARCs) were initially designed in our research group as inhibitors and photoluminescent probes targeting basophilic protein kinases. Here, we explored a panel of ARCs and their fluorescent derivatives in biochemical assays with members of the protein arginine methyltransferase (PRMT) family, focusing specifically on PRMT1. In the binding/displacement assay with detection of fluorescence anisotropy, we found that ARCs and arginine-rich peptides could serve as high-affinity ligands for PRMT1, whereas the equilibrium dissociation constant values depended dramatically on the number of arginine residues within the compounds. The fluorescently labeled probe ARC-1081 was displaced from its complex with PRMT1 by both S-adenosyl-l-methionine (SAM) and S-adenosyl-l-homocysteine (SAH), indicating binding of the adenosine mimetic of ARCs to the SAM/SAH-binding site within PRMT1. The ARCs that had previously shown microsecond-lifetime photoluminescence in complex with protein kinases did not feature such property in complex with PRMT1, demonstrating the selectivity of the time-resolved readout format. When tested against a panel of PRMT family members in single-dose inhibition experiments, a micromolar concentration of ARC-902 was required for the inhibition of PRMT1 and PRMT7. Overall, our results suggest that the compounds containing multiple arginine residues (including the well-known cell-penetrating peptides) are likely to inhibit PRMT and thus interfere with the epigenetic modification status in complex biological systems, which should be taken into consideration during interpretation of the experimental data.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Chemistry, University of Tartu, Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Naila Nasirova
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Tanel Sõrmus
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Taavo Tähtjärv
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Kaido Viht
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Tõiv Haljasorg
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Koit Herodes
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Jana Jaal
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| | - Asko Uri
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Matulienė J, Žvinys G, Petrauskas V, Kvietkauskaitė A, Zakšauskas A, Shubin K, Zubrienė A, Baranauskienė L, Kačenauskaitė L, Kopanchuk S, Veiksina S, Paketurytė-Latvė V, Smirnovienė J, Juozapaitienė V, Mickevičiūtė A, Michailovienė V, Jachno J, Stravinskienė D, Sližienė A, Petrošiūtė A, Becker HM, Kazokaitė-Adomaitienė J, Yaromina A, Čapkauskaitė E, Rinken A, Dudutienė V, Dubois LJ, Matulis D. Picomolar fluorescent probes for compound affinity determination to carbonic anhydrase IX expressed in live cancer cells. Sci Rep 2022; 12:17644. [PMID: 36271018 PMCID: PMC9586938 DOI: 10.1038/s41598-022-22436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/14/2022] [Indexed: 01/18/2023] Open
Abstract
Numerous human cancers, especially hypoxic solid tumors, express carbonic anhydrase IX (CAIX), a transmembrane protein with its catalytic domain located in the extracellular space. CAIX acidifies the tumor microenvironment, promotes metastases and invasiveness, and is therefore considered a promising anticancer target. We have designed a series of high affinity and high selectivity fluorescein-labeled compounds targeting CAIX to visualize and quantify CAIX expression in cancer cells. The competitive binding model enabled the determination of common CA inhibitors' dissociation constants for CAIX expressed in exponentially growing cancer cells. All tested sulfonamide compounds bound the proliferating cells with similar affinity as to recombinantly purified CAIX. The probes are applicable for the design of selective drug-like compounds for CAIX and the competition strategy could be applied to other drug targets.
Collapse
Affiliation(s)
- Jurgita Matulienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Gediminas Žvinys
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Agnė Kvietkauskaitė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Audrius Zakšauskas
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Kirill Shubin
- grid.419212.d0000 0004 0395 6526Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006 Latvia
| | - Asta Zubrienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Lina Baranauskienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Lina Kačenauskaitė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Sergei Kopanchuk
- grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Santa Veiksina
- grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Vaida Paketurytė-Latvė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Joana Smirnovienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Vaida Juozapaitienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Aurelija Mickevičiūtė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Vilma Michailovienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Jelena Jachno
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Dovilė Stravinskienė
- grid.6441.70000 0001 2243 2806Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Aistė Sližienė
- grid.6441.70000 0001 2243 2806Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Agnė Petrošiūtė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Holger M. Becker
- Zoology and Animal Physiology, Institute of Zoology, TU Dresden, 01217 Dresden, Germany
| | - Justina Kazokaitė-Adomaitienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania ,grid.430814.a0000 0001 0674 1393Present Address: Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ala Yaromina
- grid.5012.60000 0001 0481 6099The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Reproduction, Maastricht University, Universiteitssingel 50/23, 6200 MD Maastricht, The Netherlands
| | - Edita Čapkauskaitė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Ago Rinken
- grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Virginija Dudutienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Ludwig J Dubois
- grid.5012.60000 0001 0481 6099The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Reproduction, Maastricht University, Universiteitssingel 50/23, 6200 MD Maastricht, The Netherlands
| | - Daumantas Matulis
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
6
|
Sõrmus T, Lavogina D, Teearu A, Enkvist E, Uri A, Viht K. Construction of Covalent Bisubstrate Inhibitor of Protein Kinase Reacting with Cysteine Residue at Substrate-Binding Site. J Med Chem 2022; 65:10975-10991. [PMID: 35960538 DOI: 10.1021/acs.jmedchem.2c00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent clinical success with targeted covalent inhibitors points to new possibilities for development of protein kinase (PK)-targeted drugs by exploiting reactive cysteine residues in and around the ATP-binding site. However, more than 300 human PKs lack cysteine residues in the ATP-binding site. Here, we report the first covalent bisubstrate PK inhibitor whose electrophilic warhead reaches outside the ATP-binding site and reacts with a distant cysteine residue. A series of covalent inhibitors and their reversible counterparts were synthesized and characterized. The most potent reversible inhibitor possessed picomolar affinity and its cysteine-reactive counterpart revealed high value of kinact/KI ratio (6.2 × 107 M-1 s-1) for the reaction with the catalytic subunit of cAMP-dependent PK (PKAc). Under optimized conditions, fluorescent dye-labeled covalent inhibitors demonstrated PKA-selectivity in the cell lysate and reacted with several proteins inside live cells, including PKAc. The disclosed compounds serve as leads for targeting PKs possessing an analogously positioned cysteine residue.
Collapse
Affiliation(s)
- Tanel Sõrmus
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Darja Lavogina
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Anu Teearu
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Asko Uri
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Kaido Viht
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| |
Collapse
|
7
|
Wang J, Jin Y, Li M, Liu S, Lo KKW, Zhao Q. Time-Resolved Luminescent Sensing and Imaging for Enzyme Catalytic Activity Based on Responsive Probes. Chem Asian J 2022; 17:e202200429. [PMID: 35819359 DOI: 10.1002/asia.202200429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Enzymes, as a kind of biomacromolecules, play an important role in many physiological processes and relate directly to various diseases. Developing an efficient detection method for enzyme activity is important to achieve early diagnosis of enzyme-relevant diseases and high throughput screening of potential enzyme-relevant drugs. Time-resolved luminescence assay provide a high accuracy and signal-to-noise ratios detection methods for enzyme activity, which has been widely used in high throughput screening of enzyme-relevant drugs and diagnosis of enzyme-relevant diseases. Inspired by these advantages, various responsive probes based on metal complexes and metal-free organic compounds have been developed for time-resolved bioimaging and biosensing of enzyme activity owing to their long luminescence lifetimes, high quantum yields and photostability. In this review, we comprehensively reviewed metal complex- and metal-free organic compound-based responsive probes applied to detect enzyme activity through time-resolved imaging, including their design strategies and sensing principles. Current challenges and future prospects in this rapidly growing field are also discussed.
Collapse
Affiliation(s)
- Jiawei Wang
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Yibiao Jin
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Mingdang Li
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Kenneth Kam-Wing Lo
- City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, Hong Kong, CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, 210023, Nanjing, CHINA
| |
Collapse
|
8
|
Müller C, Gleixner J, Tahk MJ, Kopanchuk S, Laasfeld T, Weinhart M, Schollmeyer D, Betschart MU, Lüdeke S, Koch P, Rinken A, Keller M. Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y 1 Receptor. J Med Chem 2022; 65:4832-4853. [PMID: 35263541 DOI: 10.1021/acs.jmedchem.1c02033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent crystallization of the neuropeptide Y Y1 receptor (Y1R) in complex with the argininamide-type Y1R selective antagonist UR-MK299 (2) opened up a new approach toward structure-based design of nonpeptidic Y1R ligands. We designed novel fluorescent probes showing excellent Y1R selectivity and, in contrast to previously described fluorescent Y1R ligands, considerably higher (∼100-fold) binding affinity. This was achieved through the attachment of different fluorescent dyes to the diphenylacetyl moiety in 2 via an amine-functionalized linker. The fluorescent ligands exhibited picomolar Y1R binding affinities (pKi values of 9.36-9.95) and proved to be Y1R antagonists, as validated in a Fura-2 calcium assay. The versatile applicability of the probes as tool compounds was demonstrated by flow cytometry- and fluorescence anisotropy-based Y1R binding studies (saturation and competition binding and association and dissociation kinetics) as well as by widefield and total internal reflection fluorescence (TIRF) microscopy of live tumor cells, revealing that fluorescence was mainly localized at the plasma membrane.
Collapse
Affiliation(s)
- Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Sergei Kopanchuk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Michael Weinhart
- Institute of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes-Gutenberg-University Mainz, Düsbergweg 10-14, 55099 Mainz, Germany
| | - Martin U Betschart
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ago Rinken
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|