1
|
Wang J, Lu Z, Liu Z, Chen Q. Colorimetric and fluorescent dual-modality assay for cell-free mitochondrial DNA copy number in saliva. Anal Biochem 2025; 702:115840. [PMID: 40081642 DOI: 10.1016/j.ab.2025.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Copy number of cell-free mitochondrial DNA (cf-mtDNA) has garnered significant attention as a biomarker for studying and diagnosing various diseases. However, Quantitative Real-time PCR (qPCR) and Droplet Digital PCR (ddPCR) assays for cf-mtDNA copy number detection require expensive equipment and high experiment conditions. In this study, a colorimetric and fluorescent dual-modality assay was developed for quantitative detection of cf-mtDNA copy number. With G-quadruplex (G4) sequence modified primers, the assay could quantitatively detect cf-mtDNA with spectrophotometry, RGB (Red, Green, Blue) visual method and fluorescence method, which made the application scenarios more diverse. The specificity of dual-mode method was better, and the detection limits of spectrophotometry, RGB visual method and fluorescence method were as low as 1.45 × 10-1 copies/μL, 1.65 copies/μL and 1.58 × 10-1 copies/μL, respectively. Compared with qPCR and ddPCR assays developed in previous studies, the dual-modality assay in this study had a lower detection limit. It was also independent of expensive qPCR and ddPCR equipment and the detection cost was low. Therefore, the colorimetric and fluorescent dual-modality assay represent a label-free and sensitive approach for assessing cf-mtDNA levels, offering promising implications for biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Jiaxu Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Zhengrong Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Zhanmin Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Qiming Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
2
|
Chen Q, Gu Y, Wang Y, Lu Z, Dong Q, Liu Z. Development of a smartphone-assisted multiple colorimetric detection assay for GSH in food based on the degradation of gold nanorods. ANAL SCI 2025; 41:335-343. [PMID: 39827446 DOI: 10.1007/s44211-024-00711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
Glutathione (GSH) is a tripeptide and natural reducing agent composed of glutamic acid, glycine, and cysteine. Its level in the human body is closely linked to human health, such as diabetes, Alzheimer's disease, and cancer. The supplementation of exogenous GSH could bring health benefits and GSH detection in food is of considerable importance. However, the existing assays for GSH detection such as high-performance liquid chromatography/mass spectrometry, electrochemiluminescence and fluorescent nanoprobe were not satisfactory because of the disadvantages of equipment and site requirements. In this study, a multiple-colorimetric detection assay for GSH was developed based on GSH's reaction with gold nanorods. During the reaction with varying concentrations of GSH, the gold nanorods degraded into spherical nanoparticles with multiple color changes, which could be used to determine GSH concentrations. The transverse surface plasmon resonance absorption peak of gold nanorods (AuNRs) significantly shifted, indicating a novel mechanism distinct from etching or surface coating, which typically altered the longitudinal surface plasmon absorption peak. Under optimized conditions, the assay exhibited commendable specificity and reliability in actual samples. The assay accurately quantified GSH ranging from 1 to 10 µM, with detection limits of 439 nM and 260 nM for spectrophotometry and visual analysis, respectively. It was firstly to use GSH as a reducing agent to react with AuNRs in the presence of AgNO3 and the mechanism was different from etching or surface coating. The study's assay shows potential for detecting GSH in food samples and provides an alternative approach for the development of colorimetric detection assays based on AuNRs.
Collapse
Affiliation(s)
- Qiming Chen
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China
| | - Yimeng Gu
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China
| | - Yikai Wang
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China
| | - Zhengrong Lu
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China
| | - Quanling Dong
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China
| | - Zhanmin Liu
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China.
| |
Collapse
|
3
|
Tarara M, Tzanavaras PD, Tsogas GZ. O-Phthalaldehyde Derivatization for the Paper-Based Fluorometric Determination of Glutathione in Nutritional Supplements. Molecules 2024; 29:2550. [PMID: 38893425 PMCID: PMC11173998 DOI: 10.3390/molecules29112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Herein, a new, direct paper-based fluorimetric method is described for the quantitative determination of glutathione (GSH) molecules in nutritional supplements. Briefly, the proposed analytical method is based on the fluorescence emission resulting from the direct and selective chemical reaction of GSH molecules with the derivatization reagent that is o-phthalaldehyde (OPA) in acidic conditions at room temperature. The intensity of the emitted fluorescence on the surface of the analytical paper devices after irradiation with a lamp at 365 nm is proportional to the concentration of GSH and is measured using a smartphone as the detector. This methodology, which is suitable for measurements in laboratories with limited resources, does not require specialized instrumentation or trained personnel. The protocol governing the proposed method is simple and easily applicable. Essentially, the chemical analyst should adjust the value of pH on the surface of the paper by adding a minimal amount of buffer solution; then, after adding a few microliters of the derivatization reagent, wait for the surface of the paper to dry and, finally, add the analyte. Subsequently, the irradiation of the sensor and the measurement of the emitted fluorescence can be recorded with a mobile phone. In the present study, several parameters affecting the chemical reaction and the emitted fluorescence were optimized, the effect of interfering compounds that may be present in dietary supplements was examined, and the stability of these paper sensors under different storage conditions was evaluated. Additionally, the chemical stability of these paper devices in various maintenance conditions was studied, with satisfactory results. The detection limit calculated as 3.3 S/N was 20.5 μmol L-1, while the precision of the method was satisfactory, ranging from 3.1% (intra-day) to 7.3% (inter-day). Finally, the method was successfully applied to three different samples of dietary supplements.
Collapse
Affiliation(s)
| | | | - George Z. Tsogas
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.T.); (P.D.T.)
| |
Collapse
|
4
|
Stevens D, Kramer AT, Coogan MA, Sayes CM. Developmental effects of zebrafish (Danio rerio) embryos after exposure to glyphosate and lead mixtures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115886. [PMID: 38211515 DOI: 10.1016/j.ecoenv.2023.115886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Natural aquatic environments have a heterogeneous composition; therefore, simultaneous exposure to multiple contaminants is relevant and more realistic when assessing exposure and toxicity. This study examines the combinatorial effects of two compounds found ubiquitously in drinking water across the United States: glyphosate and lead acetate. Zebrafish (Danio rerio) embryos were used as a model for investigating developmental delays following controlled exposures. Six different environmentally relevant exposure concentrations of glyphosate, ranging from 0.001 to 10 ppm, and lead acetate, ranging from 0.5 to 4 ppm, were applied first as single exposures and then as co-exposures. The sublethal endpoints of hatching and coagulation were quantified to determine potencies. Results indicate that higher concentrations of the individual chemicals correlate with later hatching with correlation coefficients of 0.71 and 0.40 for glyphosate and lead acetate respectively, while the co-exposure at lower concentrations induced earlier hatching with a correlation coefficient 0.74. In addition, increased levels of coagulation and glutathione reductase activity were observed following co-exposure, as compared to the individual exposures, suggesting potential toxicological interactions. These results support the need for further work assessing the combined potencies of aquatic contaminants rather than individual exposures.
Collapse
Affiliation(s)
- Dinny Stevens
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Alec T Kramer
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Melinda A Coogan
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| |
Collapse
|
5
|
Wang Y, Bian X, Wan M, Dong W, Gao W, Yao Z, Guo C. Effects of riboflavin deficiency and high dietary fat on hepatic lipid accumulation: a synergetic action in the development of non-alcoholic fatty liver disease. Nutr Metab (Lond) 2024; 21:1. [PMID: 38169398 PMCID: PMC10763341 DOI: 10.1186/s12986-023-00775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in the liver. Riboflavin, one of water soluble vitamins, plays a role in lipid metabolism and antioxidant function. However, the effects of riboflavin deficiency on NAFLD development have not yet to be fully explored. METHODS In the present study, an animal model of NAFLD was induced by high fat diet feeding in mice and a cellular model of NAFLD was developed in HepG2 cells by palmitic acid (PA) exposure. The effects of riboflavin deficiency on lipid metabolism and antioxidant function were investigated both in vivo and in vitro. In addition, the possible role of peroxisome proliferator-activated receptor gamma (PPARγ) was studied in HepG2 cells using gene silencing technique. RESULTS The results showed that riboflavin deficiency led to hepatic lipid accumulation in mice fed high fat diet. The expressions of fatty acid synthase (FAS) and carnitine palmitoyltransferase 1 (CPT1) were up-regulated, whereas that of adipose triglyceride lipase (ATGL) down-regulated. Similar changes in response to riboflavin deficiency were demonstrated in HepG2 cells treated with PA. Factorial analysis revealed a significant interaction between riboflavin deficiency and high dietary fat or PA load in the development of NAFLD. Hepatic PPARγ expression was significantly upregulated in mice fed riboflavin deficient and high fat diet or in HepG2 cells treated with riboflavin deficiency and PA load. Knockdown of PPARγ gene resulted in a significant reduction of lipid accumulation in HepG2 cells exposed to riboflavin deficiency and PA load. CONCLUSIONS There is a synergetic action between riboflavin deficiency and high dietary fat on the development of NAFLD, in which PPARγ may play an important role.
Collapse
Affiliation(s)
- Yanxian Wang
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Xiangyu Bian
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Min Wan
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Weiyun Dong
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Weina Gao
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Zhanxin Yao
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Changjiang Guo
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
6
|
Lin TZ, Chen CH, Lei YP, Huang CS. Gradient Guided-Mode Resonance Biosensor with Smartphone Readout. BIOSENSORS 2023; 13:1006. [PMID: 38131766 PMCID: PMC10741440 DOI: 10.3390/bios13121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Integrating biosensors with smartphones is becoming an increasingly popular method for detecting various biomolecules and could replace expensive laboratory-based instruments. In this work, we demonstrate a novel smartphone-based biosensor system with a gradient grating period guided-mode resonance (GGP-GMR) sensor. The sensor comprises numerous gratings which each correspond to and block the light of a specific resonant wavelength. This results in a dark band, which is observed using a CCD underneath the GGP-GMR sensor. By monitoring the shift in the dark band, the concentration of a molecule in a sample can be determined. The sensor is illuminated by a light-emitting diode, and the light transmitted through the GGP-GMR sensor is directly captured by a smartphone, which then displays the results. Experiments were performed to validate the proposed smartphone biosensor and a limit of detection (LOD) of 1.50 × 10-3 RIU was achieved for sucrose solutions. Additionally, multiplexed detection was demonstrated for albumin and creatinine solutions at concentrations of 0-500 and 0-1 mg/mL, respectively; the corresponding LODs were 1.18 and 20.56 μg/mL.
Collapse
Affiliation(s)
| | | | | | - Cheng-Sheng Huang
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (T.-Z.L.); (C.-H.C.); (Y.-P.L.)
| |
Collapse
|
7
|
Ortiz-Gómez I, Rivadeneyra A, Salmerón JF, de Orbe-Payá I, Morales DP, Capitán-Vallvey LF, Salinas-Castillo A. Near-Field Communication Tag for Colorimetric Glutathione Determination with a Paper-Based Microfluidic Device. BIOSENSORS 2023; 13:267. [PMID: 36832033 PMCID: PMC9954394 DOI: 10.3390/bios13020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Here, we propose a microfluidic paper-based analytical device (µPAD) implemented with a near-field communication (NFC) tag as a portable, simple and fast colorimetric method for glutathione (GSH) determination. The proposed method was based on the fact that Ag+ could oxidize 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized blue TMB. Thus, the presence of GSH could cause the reduction of oxidized TMB, which resulted in a blue color fading. Based on this finding, we developed a method for the colorimetric determination of GSH using a smartphone. A µPAD implemented with the NFC tag allowed the harvesting of energy from a smartphone to activate the LED that allows the capture of a photograph of the µPAD by the smartphone. The integration between electronic interfaces into the hardware of digital image capture served as a means for quantitation. Importantly, this new method shows a low detection limit of 1.0 µM. Therefore, the most important features of this non-enzymatic method are high sensitivity and a simple, fast, portable and low-cost determination of GSH in just 20 min using a colorimetric signal.
Collapse
Affiliation(s)
- Inmaculada Ortiz-Gómez
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Almudena Rivadeneyra
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
- Electronic Devices Research Group, Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - José F. Salmerón
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
- Electronic Devices Research Group, Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Ignacio de Orbe-Payá
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Diego P. Morales
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
- Electronic Devices Research Group, Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Luis Fermín Capitán-Vallvey
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Alfonso Salinas-Castillo
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Liu M, Yang C, Chu Q, Fu X, Zhang Y, Sun G. Superoxide Dismutase and Glutathione Reductase as Indicators of Oxidative Stress Levels May Relate to Geriatric Hip Fractures' Survival and Walking Ability: A Propensity Score Matching Study. Clin Interv Aging 2022; 17:1081-1090. [PMID: 35855743 PMCID: PMC9288178 DOI: 10.2147/cia.s370970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Background Oxidative stress status may affect bone metabolism and regeneration. However, few studies reported whether oxidative stress could impact the outcomes of hip fractures. This study aimed to explore if superoxide dismutase and glutathione reductase, the critical antioxidant enzymes, correlated with the prognosis of hip fractures. Methods Patients with hip fractures were extracted from our database, and those who met the inclusion criteria were analyzed. Propensity score matching was used to reduce the influence of confounding factors, and ROC curves based on matched populations were created to determine the optimal cutoff points of SOD and GR. Then, outcomes between SOD or GR and outcomes of hip fractures were compared. Results Out of 301 patients enrolled in this study, 50 patients died within one year. After a 1:1 PSM, the patients with less than 1-year survival had significantly lower SOD (p = 0.026) and GR (p = 0.021) than those who were still alive at one year. Logistics analysis showed that low SOD and low GR may be independent risk factors for 6-month survival, 1-year survival, 6-month free walking ability, and 1-year free walking ability. Conclusion SOD and GR may be the independent risk factors for survival and walking abilities of hip fractures.
Collapse
Affiliation(s)
- Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qining Chu
- Emergency Trauma Center, Nanyang Second General Hospital, Nanyang, People's Republic of China
| | - Xiao Fu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yue Zhang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Liao X, Li M, Zou L. Target-induced activation of DNAzyme for highly sensitive colorimetric detection of bleomycin via DNA scission. RSC Adv 2022; 12:18296-18300. [PMID: 35799941 PMCID: PMC9215162 DOI: 10.1039/d2ra02816f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022] Open
Abstract
In this work, a label-free and sensitive colorimetric sensing strategy for the detection of bleomycin (BLM) was developed on the basis of BLM-mediated activation of G-quadruplex DNAzyme via DNA strand scission. A G-quadruplex based hairpin probe (G4HP) containing the scission site (5'-GT-3') of BLM at the loop region and guanine (G)-rich sequences at its 5'-end was employed in this protocol. In the presence of BLM, it may cleave the 5'-GT-3' site of the hairpin probe with Fe(ii) as a cofactor, releasing the G-tetrads DNA fragment, which may further bind hemin to form a catalytic G-quadruplex-hemin DNAzyme. The resultant G-quadruplex DNAzyme has notable peroxidase-like activity, which effectively catalyzes the oxidation of 2,2'-azino-bis(3-ethylbenzothiozoline-6-sulfonic acid) (ABTS) by H2O2 to produce the blue-green-colored free-radical cation (ABTS·+). Therefore, the detection of BLM can be achieved by observing the color transition with the naked eye or measuring the absorbance at a wavelength of 420 nm using a UV-Vis spectrophotometer. Attributing to the specific BLM-induced DNA strand scission and the effective locking of G-tetrads in the stem of the G4HP, the colorimetric sensing strategy exhibits high sensitivity and selectivity for detection of BLM in human serum samples, which might hold great promise for BLM assay in biomedical and clinical research.
Collapse
Affiliation(s)
- Xiaofei Liao
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 PR China
| | - Mengyan Li
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 PR China
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 PR China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510699 PR China
| |
Collapse
|