1
|
Tamilselvi V, Arivazhagan M, Thirumavalavan M, Sugumar K, Manivel S, Elangovan N, Arumugam N, Padmanaban R. Synthesis, spectral, DFT, topology, NCI and molecular docking studies of (1E,1′E)-N, N'-(sulfonylbis(4,1-phenylene))bis(1-(4-bromophenyl)methanimine). J Mol Struct 2024; 1315:138808. [DOI: 10.1016/j.molstruc.2024.138808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
2
|
Cabral-Pacheco GA, Flores-Morales V, Garza-Veloz I, Damián-Sandoval M, Martínez-Flores RB, Martínez-Vázquez MC, Delgado-Enciso I, Rodriguez-Sanchez IP, Martinez-Fierro ML. Evaluation of dapsone and its synthetic derivative DDS‑13 in cancer in vitro. Exp Ther Med 2024; 27:47. [PMID: 38144918 PMCID: PMC10739155 DOI: 10.3892/etm.2023.12335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/02/2023] [Indexed: 12/26/2023] Open
Abstract
The present study highlighted the repositioning of the drug dapsone (DDS) for cancer therapy. Due to its mechanism of action, DDS has a dual effect as an antibiotic and as an anti-inflammatory/immunomodulator; however, at high doses, it has important adverse effects. The derivative DDS-13 [N,N'-(sulfonyl bis (4,1-phenylene)) dioctanamide] was synthesized through an N-acylation reaction to compare it with DDS. Its cytotoxic effects in cancer cells (DU145 and HeLa) and non-cancer cells (HDFa) were observed at concentrations ranging 0.01-100 µM and its physicochemical/pharmacokinetic properties were analyzed using the SwissADME tool. The objectives of the present study were to evaluate the anticancer activity of both DDS and DDS-13 and to identify the physicochemical and pharmacokinetic properties of DDS-13. The results showed that DDS-13 presented a cytotoxic effect in the DU145 cell line (IC50=19.06 µM), while DDS showed a cytotoxic effect on both the DU145 (IC50=11.11 µM) and HeLa (IC50=13.07 µM) cell lines. DDS-13 appears to be a good cytotoxic candidate for the treatment of prostate cancer, while DDS appears to be a good candidate for both cervical and prostate cancer. Neither candidate showed a cytotoxic effect in non-cancerous cells. The different pharmacokinetic properties of DDS-13 make it a new candidate for evaluation in preclinical models for the treatment of cancer.
Collapse
Affiliation(s)
- Griselda A. Cabral-Pacheco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Virginia Flores-Morales
- Laboratory of Asymmetric Synthesis and Bio-Chemoinformatics, Chemical Engineering, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Miriam Damián-Sandoval
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Rosa B. Martínez-Flores
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - María C. Martínez-Vázquez
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Iván Delgado-Enciso
- School of Medicine, University of Colima, Colima 28040, Mexico
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico
| | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo Leon, Nuevo León 66455, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| |
Collapse
|
3
|
Borges RS, Aguiar CPO, Oliveira NLL, Amaral INA, Vale JKL, Chaves Neto AMJ, Queiroz AN, da Silva ABF. Antioxidant capacity of simplified oxygen heterocycles and proposed derivatives by theoretical calculations. J Mol Model 2023; 29:232. [PMID: 37407749 DOI: 10.1007/s00894-023-05602-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/22/2023] [Indexed: 07/07/2023]
Abstract
CONTEXT Some structural properties can be involved in the antioxidant capacity of several polyphenol derivatives, among them their simplified structures. This study examines the contribution of simplified structure for the antioxidant capacity of some natural and synthetic antioxidants. The resonance structures were related to the π-type electron system of carbon-carbon double bonds between both phenyl rings. Trans-resveratrol, phenyl-benzofuran, phenyl-indenone, and benzylidene-benzofuranone are the best basic antioxidant templates among the simplified derivatives studied here. Additionally, the stilbene moiety was found on the molecules with the best antioxidant capacity. Furthermore, our investigation suggests that these compounds can be used as antioxidant scaffold for designing and developing of new promising derivatives. METHODS To investigate the structure-antioxidant capacity for sixteen simplified natural and proposed derivatives we have employed density functional theory and used Gaussian 09. Our DFT calculations were performed using the B3LYP functional and the 6-31+G(d,p) basis set. All electron transfer mechanisms were investigated by using values of HOMO, ionization potential, energy affinity, stabilization energies, and spin density distributions.
Collapse
Affiliation(s)
- Rosivaldo S Borges
- Núcleo de Estudos e Seleção de Compostos Bioativos, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos, SP, 13560-970, Brazil.
| | - Christiane P O Aguiar
- Núcleo de Estudos e Seleção de Compostos Bioativos, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Nicole L L Oliveira
- Núcleo de Estudos e Seleção de Compostos Bioativos, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Israel N A Amaral
- Núcleo de Estudos e Seleção de Compostos Bioativos, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Joyce K L Vale
- Núcleo de Estudos e Seleção de Compostos Bioativos, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Antonio M J Chaves Neto
- Faculdade de Física, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Auriekson N Queiroz
- Núcleo de Estudos e Seleção de Compostos Bioativos, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Albérico B F da Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
4
|
Sinan Tokalı F. Novel Benzoic Acid Derivatives Bearing Quinazolin‐4(3
H
)‐one Ring: Synthesis, Characterization, and Inhibition Effects on α‐Glucosidase and α‐Amylase. ChemistrySelect 2022. [DOI: 10.1002/slct.202204019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies Kars Vocational School Kafkas University 36100 Kars Turkey
| |
Collapse
|
5
|
Synthesis, Characterization, and Biological Evaluation of Novel N-{4-[(4-Bromophenyl)sulfonyl]benzoyl}-L-valine Derivatives. Processes (Basel) 2022. [DOI: 10.3390/pr10091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this article, we present the design and synthesis of novel compounds, containing in their molecules an L-valine residue and a 4-[(4-bromophenyl)sulfonyl]phenyl moiety, which belong to N-acyl-α-amino acids, 4H-1,3-oxazol-5-ones, 2-acylamino ketones, and 1,3-oxazoles chemotypes. The synthesized compounds were characterized through elemental analysis, MS, NMR, UV/VIS, and FTIR spectroscopic techniques, the data obtained are in accordance with the assigned structures. Their purities were verified by reversed-phase HPLC. The new compounds were tested for antimicrobial action against bacterial and fungal strains for antioxidant activity by DPPH, ABTS, and ferric reducing power assays, and for toxicity on freshwater cladoceran Daphnia magna Straus. Furthermore, in silico studies were performed concerning the potential antimicrobial effect and toxicity. The results of antimicrobial activity, antioxidant effect, and toxicity assays, as well as of in silico analysis revealed a promising potential of N-{4-[(4-bromophenyl)sulfonyl]benzoyl}-L-valine and 2-{4-[(4-bromophenyl)sulfonyl]phenyl}-4-isopropyl-4H-1,3-oxazol-5-one for developing novel antimicrobial agents to fight Gram-positive pathogens, and particularly Enterococcus faecium biofilm-associated infections.
Collapse
|
6
|
In Silico and In Vitro Assessment of Antimicrobial and Antibiofilm Activity of Some 1,3-Oxazole-Based Compounds and Their Isosteric Analogues. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this paper, we report on the antimicrobial activity assessment of 49 compounds previously synthesized as derivatives of alanine or phenylalanine that incorporate a 4-(4-X-phenylsulfonyl)phenyl fragment (X = H, Cl, or Br), namely 21 acyclic compounds (6 × N-acyl-α-amino acids, 1 × N-acyl-α-amino acid ester, and 14 × N-acyl-α-amino ketones) and 28 pentatomic heterocycles from the oxazole-based compound class (6 × 4H-1,3-oxazol-5-ones, 16 × 5-aryl-1,3-oxazoles, and 6 × ethyl 1,3-oxazol-5-yl carbonates). Both in silico and in vitro qualitative and quantitative assays were used to investigate the antimicrobial potential of these derivatives against planktonic and biofilm-embedded microbial strains. Some of the tested compounds showed promising antimicrobial and antibiofilm activity depending on their chemical scaffold and lipophilic character.
Collapse
|