1
|
Soni A, Singh D, Gupta N. Heterogenization of Ionic Liquid on Multiwalled Carbon Nanotubes for Lead(II) Ion Detection. Chempluschem 2024; 89:e202400284. [PMID: 38967022 DOI: 10.1002/cplu.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The presence of lead(II) ion poses a significant threat to water systems due to their toxicity and potential health hazards. The detection of Pb2+ ions in contaminated water is very crucial. The ionic liquid functionalized multiwalled carbon nanotubes (IL@MWCNT) nanocomposite was fabricated using ionic liquid (IL) 1-methyl-3-(4-sulfobutyl)-imidazolium chloride and multiwalled carbon nanotubes (MWCNTs) for detection of lead(II) ions. It is a novel method to heterogenize the layer of IL on the surface of MWCNTs. The XPS and FTIR analyses confirm that the ionic liquid is not decomposed during annealing process. Moreover, the XRD analysis shows the presence of MWCNTs and carbon quantum dots (CQDs). The HRTEM results exhibit the aggregation of MWCNTs with IL, and formation of small distorted round shaped flakes of CQDs. Further, the successful heterogenization of IL on the surface of MWCNTs is also confirmed by TGA-DSC analysis. The quenching phenomenon of nanocomposite was observed by UV-Visible spectroscopy. The nanocomposite exhibits high performance for the selective detection of lead(II) ions in comparison to other metal ions. The presence of lead(II) ions eventually reduced the intensity of absorption. A limit of detection (LOD) of 9.16 nM was attained for Pb2+ ions in a concentration range of 0-20 nM.
Collapse
Affiliation(s)
- Abhishek Soni
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Academic Block Shahpur, Dharamshala, Kangra (H.P.), 176215, India
| | - Dilbag Singh
- Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block Shahpur, Dharamshala, Kangra (H.P.), 176215, India
| | - Neeraj Gupta
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Academic Block Shahpur, Dharamshala, Kangra (H.P.), 176215, India
| |
Collapse
|
2
|
Verevkin SP, Zaitsau DH, Ludwig R. Molecular Liquids versus Ionic Liquids: The Interplay between Inter-Molecular and Intra-Molecular Hydrogen Bonding as Seen by Vaporisation Thermodynamics. Molecules 2023; 28:539. [PMID: 36677599 PMCID: PMC9862684 DOI: 10.3390/molecules28020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
In this study, we determined the enthalpies of vaporisation for a suitable set of molecular and ionic liquids using modern techniques for vapour pressure measurements, such as the quartz crystal microbalance, thermogravimetric analysis (TGA), and gas chromatographic methods. This enabled us to measure reasonable vapour pressures, avoiding the problem of the decomposition of the ionic liquids at high temperatures. The enthalpies of vaporisation could be further analysed by applying the well-known "group contribution" methods for molecular liquids and the "centerpiece" method for ionic liquids. This combined approach allowed for the dissection of the enthalpies of vaporisation into different types of molecular interaction, including hydrogen bonding and the dispersion interaction in the liquid phase, without knowing the existing species in both the liquid and gas phases.
Collapse
Affiliation(s)
- Sergey P. Verevkin
- Department of Physical Chemistry, University of Rostock, Albert-Einstein-Str. 27, 18059 Rostock, Germany
- Department of Physical Chemistry, Kazan Federal University, 420008 Kazan, Russia
- Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Dzmitry H. Zaitsau
- Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Department of Technical Thermodynamics, University of Rostock, Albert-Einstein Str. 2, 18059 Rostock, Germany
| | - Ralf Ludwig
- Department of Physical Chemistry, University of Rostock, Albert-Einstein-Str. 27, 18059 Rostock, Germany
- Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
3
|
Rather SU, Shariff AM, Sulaimon AA, Bamufleh HS, Qasim A, Saad Khan M, Alhumade H, Saeed U, M Alalayah W. Prediction of carbon-dioxide activity coefficient for solubility in ionic liquids using multi-non-linear regression analysis. CHEMOSPHERE 2023; 311:137102. [PMID: 36334738 DOI: 10.1016/j.chemosphere.2022.137102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Activity coefficient values offer insight into the intermolecular interactions between the solute and the solvent and the deviation from the ideal behavior. CO2 capture from different industrial processes is a globally pertinent issue and the search for suitable chemicals is required. To address the issue, knowledge of activity coefficient values is crucial for CO2 separation-based process. In this regard, a correlation is developed that predicts the coefficient of CO2 activity in ionic liquids by multi-nonlinear regression analysis. The correlation is developed between the pressure range of 1-50 bar and the temperature range of 298.15-33.15 K for mole fractions of 0.3, 0.5, and 0.7. Outliers' analysis is performed using the boxplot method to determine the suitability of ranges of the selected input parameters. The preceding literature does not predict the activity coefficient in relatively lower to higher temperature and pressure ranges for CO2 solubility in ionic liquids. Initially, the activity coefficient values from COSMO-RS were obtained and compared with the correlation results. The COSMO-RS and the correlation predicted results were subsequently validated with the experimental data. The average absolute error (AAE%) of the predicted correlation values is 19.53% while the root mean square error (RMSE) value is 0.465. The correlation can be used in the future to predict the CO2 activity coefficient values in ionic liquids to facilitate qualitative analyses of their CO2 capture efficiency.
Collapse
Affiliation(s)
- Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Azmi M Shariff
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Malaysia; CO(2) Research Centre (CO(2)RES), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Malaysia
| | - Aliyu Adebayo Sulaimon
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Malaysia; Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Malaysia.
| | - Hisham S Bamufleh
- Department of Chemical and Materials Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Ali Qasim
- Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Malaysia
| | - Muhammad Saad Khan
- CO(2) Research Centre (CO(2)RES), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Malaysia
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Usman Saeed
- Department of Chemical and Materials Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Walid M Alalayah
- Department of Chemical and Materials Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Recent Strategies in Nickel-Catalyzed C–H Bond Functionalization for Nitrogen-Containing Heterocycles. Catalysts 2022. [DOI: 10.3390/catal12101163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
N-heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and numerous functional molecules. Among the current synthetic approaches, transition metal-catalyzed C–H functionalization has gained considerable attention in recent years due to its advantages of simplicity, high atomic economy, and the ready availability of starting materials. In the field of N-heterocycle synthesis via C–H functionalization, nickel has been recognized as one of the most important catalysts. In this review, we will introduce nickel-catalyzed intramolecular and intermolecular pathways for N-heterocycle synthesis from 2008 to 2021.
Collapse
|
5
|
Thermal Decomposition, Low Temperature Phase Transitions and Vapor Pressure of Less Common Ionic Liquids Based on the Bis(trifuoromethanesulfonyl)imide Anion. MATERIALS 2022; 15:ma15155255. [PMID: 35955189 PMCID: PMC9370012 DOI: 10.3390/ma15155255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Four ionic liquids (ILs) based on the bis(trifluoromethanesulfonyl)imide (NTf2) anion were synthesized and characterized concerning their thermal stability, the occurrence of low temperature phase transitions and their volatility. All these physical quantities are highly important for possible applications. Both monocationic and dicationic ILs were considered. All ILs exhibit thermal stability exceeding 350 °C, an extremely high value, due to the presence of the NTf2 anion. Monocationic ILs can undergo crystallization, and they melt at 1 and 38 °C. On the contrary, dicationic ILs containing large positively charged ions display only a glass transition around −40 °C, without any crystallization or melting process; this fact is particularly important in view of the possibly low temperature applications of the dication ILs. The vapor pressure, pv, of the four ILs was measured by isothermal thermogravimetry in the temperature range between 250 and 325 °C; the lowest values of pv were obtained for the two dicationic liquids, suggesting that they are particularly well suited for high temperature applications. The vaporization enthalpy was calculated through the Clausius–Clapeyron equation and was found in the range between ~140 and ~180 kJ/mol depending on the specific IL.
Collapse
|
6
|
Aprotic Ionic Liquids: A Framework for Predicting Vaporization Thermodynamics. Molecules 2022; 27:molecules27072321. [PMID: 35408720 PMCID: PMC9000287 DOI: 10.3390/molecules27072321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Ionic liquids (ILs) are recognized as an environmentally friendly alternative to replacing volatile molecular solvents. Knowledge of vaporization thermodynamics is crucial for practical applications. The vaporization thermodynamics of five ionic liquids containing a pyridinium cation and the [NTf2] anion were studied using a quartz crystal microbalance. Vapor pressure-temperature dependences were used to derive the enthalpies of vaporization of these ionic liquids. Vaporization enthalpies of the pyridinium-based ionic liquids available in the literature were collected and uniformly adjusted to the reference temperature T = 298.15 K. The consistent sets of evaluated vaporization enthalpies were used to develop the “centerpiece”-based group-additivity method for predicting enthalpies of vaporization of ionic compounds. The general transferability of the contributions to the enthalpy of vaporization from the molecular liquids to the ionic liquids was established. A small, but not negligible correction term was supposed to reconcile the estimated results with the experiment. The corrected “centerpiece” approach was recommended to predict the vaporization enthalpies of ILs.
Collapse
|
7
|
Molecular versus ionic liquids: Development of a thermodynamic framework for predicting vaporization thermodynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|