1
|
Santiago-Silva L, Cruz-Martínez H, Rojas-Chávez H, López-Sosa L, Calaminici P. Structural transformation in Pd nanoclusters induced by Cu doping: an ADFT study. J Mol Model 2025; 31:79. [PMID: 39928171 PMCID: PMC11811464 DOI: 10.1007/s00894-025-06305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
CONTEXT Transition metal nanoparticles have gained great importance due to their promising applications in various fields such as energy, electronics, medicine, and agriculture. For these applications, materials with outstanding properties are currently required. Therefore, different strategies have been established to improve the properties of pure nanoparticles such as alloying, doping, and formation of composites. Among these strategies, doping is gaining great importance because it has been demonstrated that doped nanoparticles have better properties than pure nanoparticles. Therefore, it is essential to know the role of doping on the structures and properties of clusters with more than 16 atoms. Consequently, in this study, we propose a theoretical study of structures and properties focusing on pure Pd19, Cu-doped Pd18 (Pd18Cu), and Cu2-doped Pd17 (Pd17Cu2) nanoclusters and thus elucidate the role of Cu atoms on the structures and properties of larger doped Pd nanoclusters than those already presented in the literature. We have selected a nanocluster with 19 atoms since the most stable structure of this system is characterized by defined shapes such as octahedron or double-icosahedron. METHODS Ground state structures and properties of Pd19, Pd18Cu, and Pd17Cu2 nanoclusters were studied using the auxiliary density functional theory (ADFT), as implemented in the deMon2k code. For obtaining the ground state structures of Pd19, Pd18Cu, and Pd17Cu2 nanoclusters, several dozen initial structures were taken along Born-Oppenheimer molecular dynamics (BOMD) trajectories and subsequently optimized without symmetry restrictions. The optimizations were performed with the revised PBE functional in combination with TZVP-GGA for the Cu atoms and using an 18-electron QECP|SD basis set for the Pd atoms. Different energetic and electronic properties were calculated for the most stable structures of Pd19, Pd18Cu, and Pd17Cu2 nanoclusters. Interestingly, when the Pd nanocluster is doped with two Cu atoms (Pd17Cu2), there is a structural transition, because the most stable structures for Pd19 and Pd18Cu are icosahedral. While the Pd17Cu nanocluster is characterized for a double-icosahedral-base structure. The binding energy per atom increases when the Cu concentration in the nanoclusters increases. According to the HOMO-LUMO gap, the chemical reactivity of the nanoclusters tends to increase as the Cu content in the nanoclusters increases.
Collapse
Affiliation(s)
- L Santiago-Silva
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, 68230, Oaxaca, Mexico
| | - H Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, 68230, Oaxaca, Mexico.
| | - H Rojas-Chávez
- Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Jardines del Llano, 13550, San Juan Ixtayopan, Tláhuac, Ciudad de México , Mexico
| | - L López-Sosa
- Departamento de Química, CINVESTAV, Instituto Politécnico Nacional 2508, 07360, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de Mexico, Mexico
| | - P Calaminici
- Departamento de Química, CINVESTAV, Instituto Politécnico Nacional 2508, 07360, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de Mexico, Mexico.
| |
Collapse
|
2
|
Kalnin A, Kharisova K, Lukyanov D, Filippova S, Li R, Yang P, Levin O, Alekseeva E. Impact of Metal Source Structure on the Electrocatalytic Properties of Polyacrylonitrile-Derived Co-N-Doped Oxygen Reduction Reaction Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1924. [PMID: 39683312 DOI: 10.3390/nano14231924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
The oxygen reduction reaction (ORR) plays a central role in energy conversion and storage technologies. A promising alternative to precious metal catalysts are non-precious metal doped carbons. Considerable efforts have been devoted to cobalt-doped carbonized polyacrylonitrile catalysts, but the optimization of their catalytic performance remains a key challenge. We have proposed a multifunctional active metal source strategy based on the cobalt complex with the ligand containing pyridine and azo-fragments. This complex simultaneously provides the nitrogenous environment for the Co atoms and acts as a blowing agent due to N2 extrusion, thus increasing the surface area and porosity of the material. This strategy provided the catalysts with a high surface area and pore volume, combined with the greater fraction of Co-N clusters, and a lesser amount and smaller size of Co metal particles compared to conventionally prepared catalysts, resulting in improved catalytic performance. In addition to strict 4-electron ORR kinetics and 383 mV overpotential, the novel catalysts exhibit limiting current values close to the Pt/C benchmark and greatly overcome the Pt in methanol tolerance. These results demonstrate the critical role of metal source structure and carbonization parameters in tailoring the structural and electrochemical properties of the catalysts.
Collapse
Affiliation(s)
- Arseniy Kalnin
- Electrochemistry Department, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Ksenia Kharisova
- Electrochemistry Department, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Daniil Lukyanov
- Electrochemistry Department, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sofia Filippova
- Electrochemistry Department, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Ruopeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Peixia Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Oleg Levin
- Electrochemistry Department, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Elena Alekseeva
- Electrochemistry Department, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Ortiz-Vázquez EA, Montejo-Alvaro F, Cruz-Martínez H, Calaminici P. Theoretical study of PdNi and PdCu clusters embedded on graphene modified by monovacancy and nitrogen doping. J Comput Chem 2024; 45:1744-1749. [PMID: 38624182 DOI: 10.1002/jcc.27371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
The stability and reactivity of Pd4Ni4 and Pd4Cu4 clusters embedded on graphene modified by monovacancy and nitrogen doping were investigated using auxiliary density functional theory (ADFT) calculations. The most stable structure of the Pd4Ni4 cluster is found in high spin multiplicity, whereas the lowest stable energy structure of the Pd4Cu4 cluster is a close shell system. The interaction energies between the bimetallic clusters and the defective graphene systems are significantly higher than those reported in the literature for the Pd-based clusters deposited on pristine graphene. It is observed that the composites studied present a HOMO-LUMO gap less than 1 eV, which suggests that they may present a good chemical reactivity. Therefore, from the results obtained in this work it can be inferred that the single vacancy graphene and pyridinic N-doped graphene are potentially good support materials for Pd-based clusters.
Collapse
Affiliation(s)
- E A Ortiz-Vázquez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Oaxaca, Mexico
| | - F Montejo-Alvaro
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Oaxaca, Mexico
| | - H Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Oaxaca, Mexico
| | - P Calaminici
- Departamento de Química, Cinvestav, Ciudad de México, Mexico
| |
Collapse
|
4
|
Zhao WY, Chen MY, Wu HR, Li WD, Lu BA. Phosphorus-Doping Enables the Superior Durability of a Palladium Electrocatalyst towards Alkaline Oxygen Reduction Reactions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2879. [PMID: 38930248 PMCID: PMC11204636 DOI: 10.3390/ma17122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
The sluggish kinetics of oxygen reduction reactions (ORRs) require considerable Pd in the cathode, hindering the widespread of alkaline fuel cells (AFCs). By alloying Pd with transition metals, the oxygen reduction reaction's catalytic properties can be substantially enhanced. Nevertheless, the utilization of Pd-transition metal alloys in fuel cells is significantly constrained by their inadequate long-term durability due to the propensity of transition metals to leach. In this study, a nonmetallic doping strategy was devised and implemented to produce a Pd catalyst doped with P that exhibited exceptional durability towards ORRs. Pd3P0.95 with an average size of 6.41 nm was synthesized by the heat-treatment phosphorization of Pd nanoparticles followed by acid etching. After P-doping, the size of the Pd nanoparticles increased from 5.37 nm to 6.41 nm, and the initial mass activity (MA) of Pd3P0.95/NC reached 0.175 A mgPd-1 at 0.9 V, slightly lower than that of Pd/C. However, after 40,000 cycles of accelerated durability testing, instead of decreasing, the MA of Pd3P0.95/NC increased by 6.3% while the MA loss of Pd/C was 38.3%. The durability was primarily ascribed to the electronic structure effect and the aggregation resistance of the Pd nanoparticles. This research also establishes a foundation for the development of Pd-based ORR catalysts and offers a direction for the future advancement of catalysts designed for practical applications in AFCs.
Collapse
Affiliation(s)
- Wen-Yuan Zhao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.-Y.Z.); (M.-Y.C.); (H.-R.W.); (W.-D.L.)
- International College, Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Ying Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.-Y.Z.); (M.-Y.C.); (H.-R.W.); (W.-D.L.)
| | - Hao-Ran Wu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.-Y.Z.); (M.-Y.C.); (H.-R.W.); (W.-D.L.)
| | - Wei-Dong Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.-Y.Z.); (M.-Y.C.); (H.-R.W.); (W.-D.L.)
| | - Bang-An Lu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.-Y.Z.); (M.-Y.C.); (H.-R.W.); (W.-D.L.)
| |
Collapse
|
5
|
Gomez-Sanchez A, Franco-Luján VA, Alfaro-López HM, Hernández-Sánchez L, Cruz-Martínez H, Medina DI. Carbon Material-Reinforced Polymer Composites for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells. Polymers (Basel) 2024; 16:671. [PMID: 38475354 DOI: 10.3390/polym16050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Bipolar plates (BPs) are one of the most important components of polymer electrolyte membrane fuel cells (PEMFCs) because of their important role in gas and water management, electrical performance, and mechanical stability. Therefore, promising materials for use as BPs should meet several technical targets established by the United States Department of Energy (DOE). Thus far, in the literature, many materials have been reported for possible applications in BPs. Of these, polymer composites reinforced with carbon allotropes are one of the most prominent. Therefore, in this review article, we present the progress and critical analysis on the use of carbon material-reinforced polymer composites as BPs materials in PEMFCs. Based on this review, it is observed that numerous polymer composites reinforced with carbon allotropes have been produced in the literature, and most of the composites synthesized and characterized for their possible application in BPs meet the DOE requirements. However, these composites can still be improved before their use for BPs in PEMFCs.
Collapse
Affiliation(s)
- Alejandro Gomez-Sanchez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico
| | - Víctor A Franco-Luján
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico
| | - Hilda M Alfaro-López
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, E.S.I.M.E.-Zacatenco, I.E., Edificio 2, U.P.A.L.M., Lindavista, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Laura Hernández-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico
| | - Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
6
|
Cruz-Martínez H, García-Hilerio B, Montejo-Alvaro F, Gazga-Villalobos A, Rojas-Chávez H, Sánchez-Rodríguez EP. Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials. Molecules 2024; 29:436. [PMID: 38257348 PMCID: PMC10820618 DOI: 10.3390/molecules29020436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Various technologies have been developed for the safe and efficient storage of hydrogen. Hydrogen storage in its solid form is an attractive option to overcome challenges such as storage and cost. Specifically, hydrogen storage in carbon-based structures is a good solution. To date, numerous theoretical studies have explored hydrogen storage in different carbon structures. Consequently, in this review, density functional theory (DFT) studies on hydrogen storage in graphene-based structures are examined in detail. Different modifications of graphene structures to improve their hydrogen storage properties are comprehensively reviewed. To date, various modified graphene structures, such as decorated graphene, doped graphene, graphene with vacancies, graphene with vacancies-doping, as well as decorated-doped graphene, have been explored to modify the reactivity of pristine graphene. Most of these modified graphene structures are good candidates for hydrogen storage. The DFT-based theoretical studies analyzed in this review should motivate experimental groups to experimentally validate the theoretical predictions as many modified graphene systems are shown to be good candidates for hydrogen storage.
Collapse
Affiliation(s)
- Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (B.G.-H.); (F.M.-A.); (A.G.-V.)
| | - Brenda García-Hilerio
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (B.G.-H.); (F.M.-A.); (A.G.-V.)
| | - Fernando Montejo-Alvaro
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (B.G.-H.); (F.M.-A.); (A.G.-V.)
| | - Amado Gazga-Villalobos
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (B.G.-H.); (F.M.-A.); (A.G.-V.)
| | - Hugo Rojas-Chávez
- Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Tláhuac, Ciudad de México 13550, Mexico;
| | | |
Collapse
|
7
|
Ruiz-Villalobos D, López-Sosa L, García-Hilerio B, Calaminici P, Cruz-Martínez H. Stability and activity of PdCu clusters embedded on pyridinic N-doped graphene: a density functional theory investigation. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2192826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Metal-Organic Framework-Derived Atomically Dispersed Co-N-C Electrocatalyst for Efficient Oxygen Reduction Reaction. Catalysts 2022. [DOI: 10.3390/catal12111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this work, an atomically dispersed cobalt-nitrogen-carbon (Co-N-C) catalyst is prepared for the oxygen reduction reaction (ORR) by using a metal-organic framework (MOF) as a self-sacrifice template under high-temperature pyrolysis. Spherical aberration-corrected electron microscopy is employed to confirm the atomic dispersion of high-density Co atoms on the nitrogen-doped carbon scaffold. The X-ray photoelectron spectroscopy results verify the existence of Co-N-C active sites and their content changes with the Co content. The electrochemical results show that the electrocatalytic activity shows a volcano-shaped relationship, which increases with the Co content from 0 to 0.99 wt.% and then decreases when the presence of Co nanoparticles at 1.61 wt.%. The atomically dispersed Co-N-C catalyst with Co content of 0.99 wt.% shows an onset potential of 0.96 V vs. reversible hydrogen electrode (RHE) and a half-wave potential of 0.89 V vs. RHE toward ORR. The excellent ORR activity is attributed to the high density of the Co-N-C sites with high intrinsic activity and high specific surface area to expose more active sites.
Collapse
|
9
|
Stability, Energetic, and Reactivity Properties of NiPd Alloy Clusters Deposited on Graphene with Defects: A Density Functional Theory Study. MATERIALS 2022; 15:ma15134710. [PMID: 35806834 PMCID: PMC9267918 DOI: 10.3390/ma15134710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023]
Abstract
Graphene with defects is a vital support material since it improves the catalytic activity and stability of nanoparticles. Here, a density functional theory study was conducted to investigate the stability, energy, and reactivity properties of NinPdn (n = 1–3) clusters supported on graphene with different defects (i.e., graphene with monovacancy and pyridinic N-doped graphene with one, two, and three N atoms). On the interaction between the clusters and graphene with defects, the charge was transferred from the clusters to the modified graphene, and it was observed that the binding energy between them was substantially higher than that previously reported for Pd-based clusters supported on pristine graphene. The vertical ionization potential calculated for the clusters supported on modified graphene decreased compared with that calculated for free clusters. In contrast, vertical electron affinity values for the clusters supported on graphene with defects increased compared with those calculated for free clusters. In addition, the chemical hardness calculated for the clusters supported on modified graphene was decreased compared with free clusters, suggesting that the former may exhibit higher reactivity than the latter. Therefore, it could be inferred that graphene with defects is a good support material because it enhances the stability and reactivity of the Pd-based alloy clusters supported on PNG.
Collapse
|
10
|
Abstract
Heat and power cogeneration plants based on fuel cells are interesting systems for energy- conversion at low environmental impact. Various fuel cells have been proposed, of which proton-exchange membrane fuel cells (PEMFC) and solid oxide fuel cells (SOFC) are the most frequently used. However, experimental testing rigs are expensive, and the development of commercial systems is time consuming if based on fully experimental activities. Furthermore, tight control of the operation of fuel cells is compulsory to avoid damage, and such control must be based on accurate models, able to predict cell behaviour and prevent stresses and shutdown. Additionally, when used for mobile applications, intrinsically dynamic operation is needed. Some selected examples of steady-state, dynamic and fluid-dynamic modelling of different types of fuel cells are here proposed, mainly dealing with PEMFC and SOFC types. The general ideas behind the thermodynamic, kinetic and transport description are discussed, with some examples of models derived for single cells, stacks and integrated power cogeneration units. This review can be considered an introductory picture of the modelling methods for these devices, to underline the different approaches and the key aspects to be taken into account. Examples of different scales and multi-scale modelling are also provided.
Collapse
|
11
|
Valdés-Madrigal MA, Montejo-Alvaro F, Cernas-Ruiz AS, Rojas-Chávez H, Román-Doval R, Cruz-Martinez H, Medina DI. Role of Defect Engineering and Surface Functionalization in the Design of Carbon Nanotube-Based Nitrogen Oxide Sensors. Int J Mol Sci 2021; 22:12968. [PMID: 34884770 PMCID: PMC8658008 DOI: 10.3390/ijms222312968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Nitrogen oxides (NOx) are among the main atmospheric pollutants; therefore, it is important to monitor and detect their presence in the atmosphere. To this end, low-dimensional carbon structures have been widely used as NOx sensors for their outstanding properties. In particular, carbon nanotubes (CNTs) have been widely used as toxic-gas sensors owing to their high specific surface area and excellent mechanical properties. Although pristine CNTs have shown promising performance for NOx detection, several strategies have been developed such as surface functionalization and defect engineering to improve the NOx sensing of pristine CNT-based sensors. Through these strategies, the sensing properties of modified CNTs toward NOx gases have been substantially improved. Therefore, in this review, we have analyzed the defect engineering and surface functionalization strategies used in the last decade to modify the sensitivity and the selectivity of CNTs to NOx. First, the different types of surface functionalization and defect engineering were reviewed. Thereafter, we analyzed experimental, theoretical, and coupled experimental-theoretical studies on CNTs modified through surface functionalization and defect engineering to improve the sensitivity and selectivity to NOx. Finally, we presented the conclusions and the future directions of modified CNTs as NOx sensors.
Collapse
Affiliation(s)
- Manuel A. Valdés-Madrigal
- Instituto Tecnológico Superior de Ciudad Hidalgo, Tecnológico Nacional de México, Av. Ing. Carlos Rojas Gutiérrez 2120, Fracc. Valle de la Herradura, Ciudad Hidalgo 61100, Mexico;
| | - Fernando Montejo-Alvaro
- Instituto Tecnológico Del Valle de Etla, Tecnológico Nacional de México, Abasolo S/N, Barrio Del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (F.M.-A.); (R.R.-D.)
| | - Amelia S. Cernas-Ruiz
- Instituto Tecnológico del Istmo, Tecnológico Nacional de México, Panamericana 821, 2da., Juchitán de Zaragoza, Oaxaca 70000, Mexico;
| | - Hugo Rojas-Chávez
- Instituto Tecnológico de Tláhuac II, Tecnológico Nacional de México, Camino Real 625, Tláhuac, Ciudad de México 13508, Mexico;
| | - Ramon Román-Doval
- Instituto Tecnológico Del Valle de Etla, Tecnológico Nacional de México, Abasolo S/N, Barrio Del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (F.M.-A.); (R.R.-D.)
| | - Heriberto Cruz-Martinez
- Instituto Tecnológico Del Valle de Etla, Tecnológico Nacional de México, Abasolo S/N, Barrio Del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (F.M.-A.); (R.R.-D.)
| | - Dora I. Medina
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza 52926, Mexico
| |
Collapse
|