1
|
Ibrahim HS, Guo M, Hilscher S, Erdmann F, Schmidt M, Schutkowski M, Sheng C, Sippl W. Probing class I histone deacetylases (HDAC) with proteolysis targeting chimera (PROTAC) for the development of highly potent and selective degraders. Bioorg Chem 2024; 153:107887. [PMID: 39423771 DOI: 10.1016/j.bioorg.2024.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Class I HDACs are considered promising targets for cancer due to their role in epigenetic modifications. The main challenges in developing a new, potent and non-toxic class I HDAC inhibitor are selectivity and appropriate pharmacokinetics. The PROTAC technique (Proteolysis Targeting Chimera) is a new method in drug development for the production of active substances that can degrade a protein of interest (POI) instead of inhibiting it. This technique will open the era to produce selective and potent drugs with a high margin of safety. Previously, we reported different inhibitors targeting class I HDACs functionalized with aminobenzamide or hydroxamate groups. In the current research work, we will employ PROTAC technique to develop class I HDAC degraders based on our previously reported inhibitors. We synthesized two series of aminobenzamide-based PROTACs and hydroxamate-based PROTACs and tested them in vitro against class I HDACs. To ensure their degradation, all of them were screened against HDAC2 as representative example of class I. The best candidates were evaluated at different concentrations at various HDAC subtypes. This resulted in the PROTAC (32a) (HI31.1) that degrades HDAC8 with a DC50 of 8.9 nM with a proper margin of selectivity against other isozymes. Moreover, PROTAC 32a is able to degrade HDAC6 with DC50 = 14.3 nM. Apoptotic study on leukemic cells (MV-4-11) displayed more than 50 % apoptosis took place at 100 nM. PROTAC 32a (HI31.1) showed a good margin of safety against normal cell line and proper chemical stability.
Collapse
Affiliation(s)
- Hany S Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Menglu Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Sebatian Hilscher
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Frank Erdmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China.
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Curcio A, Rocca R, Chiera F, Gallo Cantafio ME, Valentino I, Ganino L, Murfone P, De Simone A, Di Napoli G, Alcaro S, Amodio N, Artese A. Hit Identification and Functional Validation of Novel Dual Inhibitors of HDAC8 and Tubulin Identified by Combining Docking and Molecular Dynamics Simulations. Antioxidants (Basel) 2024; 13:1427. [PMID: 39594568 PMCID: PMC11591096 DOI: 10.3390/antiox13111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Chromatin organization, which is under the control of histone deacetylases (HDACs), is frequently deregulated in cancer cells. Amongst HDACs, HDAC8 plays an oncogenic role in different neoplasias by acting on both histone and non-histone substrates. Promising anti-cancer strategies have exploited dual-targeting drugs that inhibit both HDAC8 and tubulin. These drugs have shown the potential to enhance the outcome of anti-cancer treatments by simultaneously targeting multiple pathways critical to disease onset and progression. In this study, a structure-based virtual screening (SBVS) of 96403 natural compounds was performed towards the four Class I HDAC isoforms and tubulin. Using molecular docking and molecular dynamics simulations (MDs), we identified two molecules that could selectively interact with HDAC8 and tubulin. CNP0112925 (arundinin), bearing a polyphenolic structure, was confirmed to inhibit HDAC8 activity and tubulin organization, affecting breast cancer cell viability and triggering mitochondrial superoxide production and apoptosis.
Collapse
Affiliation(s)
- Antonio Curcio
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (F.C.); (S.A.); (A.A.)
| | - Roberta Rocca
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (F.C.); (S.A.); (A.A.)
- Net4Science Srl, University Magna Græcia, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per L’innovazione Rurale, Località Condoleo di Belcastro, 88100 Catanzaro, Italy
| | - Federica Chiera
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (F.C.); (S.A.); (A.A.)
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (M.E.G.C.); (I.V.); (L.G.); (P.M.)
| | - Ilenia Valentino
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (M.E.G.C.); (I.V.); (L.G.); (P.M.)
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (M.E.G.C.); (I.V.); (L.G.); (P.M.)
| | - Pierpaolo Murfone
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (M.E.G.C.); (I.V.); (L.G.); (P.M.)
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (A.D.S.); (G.D.N.)
| | - Giulia Di Napoli
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (A.D.S.); (G.D.N.)
| | - Stefano Alcaro
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (F.C.); (S.A.); (A.A.)
- Net4Science Srl, University Magna Græcia, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per L’innovazione Rurale, Località Condoleo di Belcastro, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (M.E.G.C.); (I.V.); (L.G.); (P.M.)
| | - Anna Artese
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (F.C.); (S.A.); (A.A.)
- Net4Science Srl, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Kamaraj R, Ghosh S, Das S, Sen S, Kumar P, Majumdar M, Dasgupta R, Mukherjee S, Das S, Ghose I, Pavek P, Raja Karuppiah MP, Chuturgoon AA, Anand K. Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions. Bioconjug Chem 2024; 35:1089-1115. [PMID: 38990186 PMCID: PMC11342303 DOI: 10.1021/acs.bioconjchem.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Targeted protein degradation or TPD, is rapidly emerging as a treatment that utilizes small molecules to degrade proteins that cause diseases. TPD allows for the selective removal of disease-causing proteins, including proteasome-mediated degradation, lysosome-mediated degradation, and autophagy-mediated degradation. This approach has shown great promise in preclinical studies and is now being translated to treat numerous diseases, including neurodegenerative diseases, infectious diseases, and cancer. This review discusses the latest advances in TPD and its potential as a new chemical modality for immunotherapy, with a special focus on the innovative applications and cutting-edge research of PROTACs (Proteolysis TArgeting Chimeras) and their efficient translation from scientific discovery to technological achievements. Our review also addresses the significant obstacles and potential prospects in this domain, while also offering insights into the future of TPD for immunotherapeutic applications.
Collapse
Affiliation(s)
- Rajamanikkam Kamaraj
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Subhrojyoti Ghosh
- Department
of Biotechnology, Indian Institute of Technology
Madras, Chennai 600036, India
| | - Souvadra Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shinjini Sen
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Priyanka Kumar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Madhurima Majumdar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Renesa Dasgupta
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Sampurna Mukherjee
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shrimanti Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Indrilla Ghose
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Petr Pavek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Muruga Poopathi Raja Karuppiah
- Department
of Chemistry, School of Physical Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod District, Kerala 671320, India
| | - Anil A. Chuturgoon
- Discipline
of Medical Biochemistry, School of Laboratory Medicine and Medical
Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Free State 9300, South Africa
| |
Collapse
|
4
|
Han B, Wang M, Li J, Chen Q, Sun N, Yang X, Zhang Q. Perspectives and new aspects of histone deacetylase inhibitors in the therapy of CNS diseases. Eur J Med Chem 2023; 258:115613. [PMID: 37399711 DOI: 10.1016/j.ejmech.2023.115613] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Many populations worldwide are suffering from central nervous system (CNS) diseases such as brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease and Huntington's disease) and stroke. There is a shortage of effective drugs for most CNS diseases. As one of the regulatory mechanisms of epigenetics, the particular role and therapeutic benefits of histone deacetylases (HDACs) in the CNS have been extensively studied. In recent years, HDACs have attracted increasing attention as potential drug targets for CNS diseases. In this review, we summarize the recent applications of representative histone deacetylases inhibitors (HDACis) in CNS diseases and discuss the challenges in developing HDACis with different structures and better blood-brain barrier (BBB) permeability, hoping to promote the development of more effective bioactive HDACis for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Bo Han
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Mengfei Wang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jiayi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Qiushi Chen
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Niubing Sun
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xuezhi Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
5
|
Duan W, Yu M, Chen J. BRD4: New Hope in the Battle Against Glioblastoma. Pharmacol Res 2023; 191:106767. [PMID: 37061146 DOI: 10.1016/j.phrs.2023.106767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The BET family proteins, comprising BRD2, BRD3 and BRD4, represent epigenetic readers of acetylated histone marks that play pleiotropic roles in the tumorigenesis and growth of multiple human malignancies, including glioblastoma (GBM). A growing body of investigation has proven BET proteins as valuable therapeutic targets for cancer treatment. Recently, several BRD4 inhibitors and degraders have been reported to successfully suppress GBM in preclinical and clinical studies. However, the precise role and mechanism of BRD4 in the pathogenesis of GBM have not been fully elucidated or summarized. This review focuses on summarizing the roles and mechanisms of BRD4 in the context of the initiation and development of GBM. In addition, several BRD4 inhibitors have been evaluated for therapeutic purposes as monotherapy or in combination with chemotherapy, radiotherapy, and immune therapies. Here, we provide a critical appraisal of studies evaluating various BRD4 inhibitors and degraders as novel treatment strategies against GBM.
Collapse
Affiliation(s)
- Weichen Duan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
6
|
Wang C, Zhang Y, Deng J, Liang B, Xing D. Developments of PROTACs technology in immune-related diseases. Eur J Med Chem 2023; 249:115127. [PMID: 36724631 DOI: 10.1016/j.ejmech.2023.115127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Traditional chemotherapy and immunotherapy are primary disease-treatment strategies. However, they face numerous challenges, including limited therapeutic benefits, off-target effects, serious adverse effects, drug resistance, long half-life time, poor oral bioavailability, and drugging undruggable proteins. Proteolytic targeted chimeras (PROTACs) were suggested to solve these problems. PROTACs are heterogeneous functional molecules linked by a chemical linker and contain a binding ligand for the protein of interest and a recruiting ligand for the E3 ligand. The binding of a PROTAC to a target protein brings the E3 ligand enzyme into proximity, initiating polyubiquitination of the target protein, followed by protease-mediated degradation. To date, PROTACs against dozens of immunological targets have been successfully developed, many of which have been clinically validated drug targets, and several have entered clinical trials for immune-related diseases. This article reviews the role of PROTACs-mediated degradation of critical proteins in immune disorders and cancer immunotherapy. Chemical structures, cellular and in vivo activities, and pharmacodynamics of these PROTACs are summarized. Lastly, we also discuss the prospects and potential limitations that PROTACs face.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Ding M, Shao Y, Sun D, Meng S, Zang Y, Zhou Y, Li J, Lu W, Zhu S. Design, synthesis, and biological evaluation of BRD4 degraders. Bioorg Med Chem 2023; 78:117134. [PMID: 36563515 DOI: 10.1016/j.bmc.2022.117134] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Epigenetic proteins are one of the important targets in the current research fields of cancer therapy. A family of bromodomain-containing (BRD) and extra terminal domain (BET) proteins act as epigenetic readers to regulate the expression of key oncogenes and anti-apoptotic proteins. Recently, although BET degraders based on PROTAC technology have achieved significant antitumor effects, the lack of selectivity for BET protein degradation has not been fully addressed. Herein, a series of small molecule BRD4 PROTACs were designed and synthesized. Most of the degraders were effective in inhibiting MM.1S and MV-4-11 cell lines, especially in MV-4-11. Among them, degrader 8b could induce the degradation of BRD4 and exhibited a time- and concentration-dependent depletion manner and there was a significant depletion of BRD4, laying a foundation for effectively treating leukemia and multiple myeloma. Moreover, 8b could also effectively prevent the activation of MRC5 cells by inducing the degradation of BRD4 protein, which preliminarily proves that the BRD4 degrader based on the PROTAC concept has great potential for the treatment of pulmonary fibrosis. Taken together, these findings laid a foundation for BRD4 degraders as an effective strategy for treating related diseases.
Collapse
Affiliation(s)
- Mengyuan Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yingying Shao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Danwen Sun
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Suorina Meng
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, PR China; Lingang Laboratory, Shanghai 201203, PR China
| | - Yi Zang
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, PR China; Lingang Laboratory, Shanghai 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, PR China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, PR China.
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
8
|
Sinatra L, Yang J, Schliehe-Diecks J, Dienstbier N, Vogt M, Gebing P, Bachmann LM, Sönnichsen M, Lenz T, Stühler K, Schöler A, Borkhardt A, Bhatia S, Hansen FK. Solid-Phase Synthesis of Cereblon-Recruiting Selective Histone Deacetylase 6 Degraders (HDAC6 PROTACs) with Antileukemic Activity. J Med Chem 2022; 65:16860-16878. [PMID: 36473103 DOI: 10.1021/acs.jmedchem.2c01659] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, we utilized the proteolysis targeting chimera (PROTAC) technology to achieve the chemical knock-down of histone deacetylase 6 (HDAC6). Two series of cereblon-recruiting PROTACs were synthesized via a solid-phase parallel synthesis approach, which allowed the rapid preparation of two HDAC6 degrader mini libraries. The PROTACs were either based on an unselective vorinostat-like HDAC ligand or derived from a selective HDAC6 inhibitor. Notably, both PROTAC series demonstrated selective degradation of HDAC6 in leukemia cell lines. The best degraders from each series (denoted A6 and B4) were capable of degrading HDAC6 via ternary complex formation and the ubiquitin-proteasome pathway, with DC50 values of 3.5 and 19.4 nM, respectively. PROTAC A6 demonstrated promising antiproliferative activity via inducing apoptosis in myeloid leukemia cell lines. These findings highlight the potential of this series of degraders as effective pharmacological tools for the targeted degradation of HDAC6.
Collapse
Affiliation(s)
- Laura Sinatra
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Jing Yang
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.,Department of Medicine, Yangzhou Polytechnic College, West Wenchang Road 458, Yangzhou, 225009, P.R. China
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Niklas Dienstbier
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Philip Gebing
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Luisa M Bachmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Melf Sönnichsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Hein-rich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
9
|
Bian Y, Alem D, Beato F, Hogenson TL, Yang X, Jiang K, Cai J, Ma WW, Fernandez-Zapico M, Tan AC, Lawrence NJ, Fleming JB, Yuan Y, Xie H. Development of SOS1 Inhibitor-Based Degraders to Target KRAS-Mutant Colorectal Cancer. J Med Chem 2022; 65:16432-16450. [PMID: 36459180 PMCID: PMC10113742 DOI: 10.1021/acs.jmedchem.2c01300] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Direct blockade of KRAS driver mutations in colorectal cancer (CRC) has been challenging. Targeting SOS1, a guanine nucleotide exchange factor, has arisen as an attractive approach for KRAS-mutant CRC. Here, we describe the development of novel SOS1 degraders and their activity in patient-derived CRC organoids (PDO). The design of these degraders as proteolysis-targeting chimera was based on the crystal structures of cereblon and SOS1. The synthesis used the 6- and 7-OH groups of a quinazoline core as anchor points to connect lenalidomide. Fifteen compounds were screened for SOS1 degradation. P7 was found to have up to 92% SOS1 degradation in both CRC cell lines and PDOs with excellent specificity. SOS1 degrader P7 demonstrated superior activity in inhibiting CRC PDO growth with an IC50 5 times lower than that of SOS1 inhibitor BI3406. In summary, we developed new SOS1 degraders and demonstrated SOS1 degradation as a feasible therapeutic strategy for KRAS-mutant CRC.
Collapse
Affiliation(s)
- Yujia Bian
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Diego Alem
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Francisca Beato
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Tara L Hogenson
- Schulze Center for Novel Therapeutics, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Xinrui Yang
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Kun Jiang
- Department of Pathology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 12111 USF Sweetgum Ln, Tampa, Florida 33620, United States
| | - Wen Wee Ma
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Martin Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Nicholas J Lawrence
- Department of Drug Discovery, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Hao Xie
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| |
Collapse
|
10
|
Li D, Yu D, Li Y, Yang R. A bibliometric analysis of PROTAC from 2001 to 2021. Eur J Med Chem 2022; 244:114838. [DOI: 10.1016/j.ejmech.2022.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
|
11
|
Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022; 51:3487-3534. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|