1
|
Ryaboshapkina M, Ye R, Ye Y, Birnbaum Y. Effects of Dapagliflozin on Myocardial Gene Expression in BTBR Mice with Type 2 Diabetes. Cardiovasc Drugs Ther 2025; 39:43-61. [PMID: 37914900 DOI: 10.1007/s10557-023-07517-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is approved for the treatment of type 2 diabetes, heart failure, and chronic kidney disease. DAPA-HF and DELIVER trial results demonstrate that the cardiovascular protective effect of dapagliflozin extends to non-diabetic patients. Hence, the mechanism-of-action may extend beyond glucose-lowering and is not completely elucidated. We have previously shown that dapagliflozin reduces cardiac hypertrophy, inflammation, fibrosis, and apoptosis and increases ejection fraction in BTBR mice with type 2 diabetes. METHODS We conducted a follow-up RNA-sequencing study on the heart tissue of these animals and performed differential expression and Ingenuity Pathway analysis. Selected markers were confirmed by RT-PCR and Western blot. RESULTS SGLT2 had negligible expression in heart tissue. Dapagliflozin improved cardiac metabolism by decreasing glycolysis and pyruvate utilization enzymes, induced antioxidant enzymes, and decreased expression of hypoxia markers. Expression of inflammation, apoptosis, and hypertrophy pathways was decreased. These observations corresponded to the effects of dapagliflozin in the clinical trials.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Regina Ye
- University of Texas at Austin, Austin, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yochai Birnbaum
- The Section of Cardiology, The Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Xiao X, Huang G, Yu X, Tan Y. Advances in Selenium and Related Compounds Inhibiting Multi-Organ Fibrosis. Drug Des Devel Ther 2025; 19:251-265. [PMID: 39830783 PMCID: PMC11742456 DOI: 10.2147/dddt.s488226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Selenium (Se), a critically essential trace element, plays a crucial role in diverse physiological processes within the human body, such as oxidative stress response, inflammation regulation, apoptosis, and lipid metabolism. Organ fibrosis, a pathological condition caused by various factors, has become a significant global health issue. Numerous studies have demonstrated the substantial impact of Se on fibrotic diseases. This review delves into the latest research advancements in Se and Se-related biological agents for alleviating fibrosis in the heart, liver, lungs, and kidneys, detailing their mechanisms of action within fibrotic pathways. Additionally, the article summa-rizes some of the anti-fibrotic drugs currently in clinical trials for the aforementioned organ fibroses.
Collapse
Affiliation(s)
- Xixi Xiao
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Minzu University, Enshi, 445000, People’s Republic of China
| | - Guoquan Huang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bioapplications, Enshi, 445000, People’s Republic of China
| | - Xinqiao Yu
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bioapplications, Enshi, 445000, People’s Republic of China
| |
Collapse
|
3
|
Chao SP, Cheng WL, Yi W, Cai HH, Deng K, Cao JL, Zeng Z, Wang H, Wu X. N-Acetylcysteine Alleviates Phenylephrine-Induced Cardiomyocyte Dysfunction via Engaging PI3K/AKT Signaling Pathway. Am J Hypertens 2024; 37:230-238. [PMID: 37864839 DOI: 10.1093/ajh/hpad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Increased reactive oxygen species (ROS) and oxidative stress response lead to cardiomyocyte hypertrophy and apoptosis, which play crucial roles in the pathogenesis of heart failure. The purpose of current research was to explore the role of antioxidant N-acetylcysteine (NAC) on cardiomyocyte dysfunction and the underlying molecular mechanisms. METHODS AND RESULTS Compared with control group without NAC treatment, NAC dramatically inhibited the cell size of primary cultured neonatal rat cardiomyocytes (NRCMs) tested by immunofluorescence staining and reduced the expression of representative markers associated with hypertrophic, fibrosis and apoptosis subjected to phenylephrine administration examined by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. Moreover, enhanced ROS expression was attenuated, whereas activities of makers related to oxidative stress response examined by individual assay Kits, including total antioxidation capacity (T-AOC), glutathione peroxidase (GSH-Px), and primary antioxidant enzyme Superoxide dismutase (SOD) were induced by NAC treatment in NRCMs previously treated with phenylephrine. Mechanistically, we noticed that the protein expression levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) and AKT were increased by NAC stimulation. More importantly, we identified that the negative regulation of NAC in cardiomyocyte dysfunction was contributed by PI3K/AKT signaling pathway through further utilization of PI3K/AKT inhibitor (LY294002) or agonist (SC79). CONCLUSIONS Collected, NAC could attenuate cardiomyocyte dysfunction subjected to phenylephrine, partially by regulating the ROS-induced PI3K/AKT-dependent signaling pathway.
Collapse
Affiliation(s)
- Sheng-Ping Chao
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Wen-Lin Cheng
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Wenjuan Yi
- Department of Dermatology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Huan-Huan Cai
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Keqiong Deng
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Jian-Lei Cao
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Ziyue Zeng
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Hairong Wang
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Zhang L, Wu J, Zhu Z, He Y, Fang R. Mitochondrion: A bridge linking aging and degenerative diseases. Life Sci 2023; 322:121666. [PMID: 37030614 DOI: 10.1016/j.lfs.2023.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Aging is a natural process, characterized by progressive loss of physiological integrity, impaired function, and increased vulnerability to death. For centuries, people have been trying hard to understand the process of aging and find effective ways to delay it. However, limited breakthroughs have been made in anti-aging area. Since the hallmarks of aging were summarized in 2013, increasing studies focus on the role of mitochondrial dysfunction in aging and aging-related degenerative diseases, such as neurodegenerative diseases, osteoarthritis, metabolic diseases, and cardiovascular diseases. Accumulating evidence indicates that restoring mitochondrial function and biogenesis exerts beneficial effects in extending lifespan and promoting healthy aging. In this paper, we provide an overview of mitochondrial changes during aging and summarize the advanced studies in mitochondrial therapies for the treatment of degenerative diseases. Current challenges and future perspectives are proposed to provide novel and promising directions for future research.
Collapse
Affiliation(s)
- Lanlan Zhang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianlong Wu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ziguan Zhu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Orthopaedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Renpeng Fang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wang Z, Jia Z, Zhou Z, Zhao X, Wang F, Zhang X, Tse G, Li G, Liu Y, Liu T. Long-Term Cardiac Damage Associated With Abdominal Irradiation in Mice. Front Pharmacol 2022; 13:850735. [PMID: 35273513 PMCID: PMC8902255 DOI: 10.3389/fphar.2022.850735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Aims: Irradiation is an effective treatment for tumors but has been associated with cardiac dysfunction. However, the precise mechanisms remain incompletely elucidated. This study investigated the long-term cardiac damage associated with abdominal irradiation and explored possible mechanisms. Methods and Results: Wild-type C57BL6/J mice were divided into two groups: untreated controls (Con) and treatment group receiving 15 Gy of abdominal gamma irradiation (AIR). Both groups received normal feeding for 12 months. The AIR group showed reductions in left ventricular ejection fraction (LVEF), fractional shortening (FS), left ventricular end-diastolic internal diameter (LVID; d), left ventricular end-diastolic volume (LV Vol. diastolic volume (LV Vol; d) and mitral transtricuspid flow late diastolic filling velocity (MV A). It also showed increased fibrosis, reduced conduction velocity and increased conduction heterogeneity. Non-targeted metabolomics showed the differential metabolites were mainly from amino acid metabolism. Further KEGG pathway annotation and enrichment analysis revealed that abnormalities in arginine and proline metabolism, lysine degradation, d-arginine and d-ornithine metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis. Conclusion: Abdominal irradiation causes long-term damage to the non-irradiated heart, as reflected by electrical and structural remodeling and mechanical dysfunction associated with abnormal amino acid biosynthesis and metabolism.
Collapse
Affiliation(s)
- Zhaojia Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ziheng Jia
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zandong Zhou
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaotong Zhao
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.,Kent and Medway Medical School, Canterbury, United Kingdom
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:907757. [PMID: 35784531 PMCID: PMC9240190 DOI: 10.3389/fendo.2022.907757] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disease that is increasing in prevalence and causes many complications. Diabetic cardiomyopathy (DCM) is a complication of diabetes that is associated with high mortality, but it is not well defined. Nevertheless, it is generally accepted that DCM refers to a clinical disease that occurs in patients with diabetes and involves ventricular dysfunction, in the absence of other cardiovascular diseases, such as coronary atherosclerotic heart disease, hypertension, or valvular heart disease. However, it is currently uncertain whether the pathogenesis of DCM is directly attributable to metabolic dysfunction or secondary to diabetic microangiopathy. Oxidative stress (OS) is considered to be a key component of its pathogenesis. The production of reactive oxygen species (ROS) in cardiomyocytes is a vicious circle, resulting in further production of ROS, mitochondrial DNA damage, lipid peroxidation, and the post-translational modification of proteins, as well as inflammation, cardiac hypertrophy and fibrosis, ultimately leading to cell death and cardiac dysfunction. ROS have been shown to affect various signaling pathways involved in the development of DCM. For instance, OS causes metabolic disorders by affecting the regulation of PPARα, AMPK/mTOR, and SIRT3/FOXO3a. Furthermore, OS participates in inflammation mediated by the NF-κB pathway, NLRP3 inflammasome, and the TLR4 pathway. OS also promotes TGF-β-, Rho-ROCK-, and Notch-mediated cardiac remodeling, and is involved in the regulation of calcium homeostasis, which impairs ATP production and causes ROS overproduction. In this review, we summarize the signaling pathways that link OS to DCM, with the intention of identifying appropriate targets and new antioxidant therapies for DCM.
Collapse
Affiliation(s)
- Meng-ling Peng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chu-wen Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hang Ren
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Shan-shan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Shan-shan Zhou,
| |
Collapse
|
7
|
Bartosova L, Horvath C, Galis P, Ferenczyova K, Kalocayova B, Szobi A, Duris-Adameova A, Bartekova M, Rajtik T. Quercetin alleviates diastolic dysfunction and suppresses adverse pro-hypertrophic signaling in diabetic rats. Front Endocrinol (Lausanne) 2022; 13:1029750. [PMID: 36568083 PMCID: PMC9772025 DOI: 10.3389/fendo.2022.1029750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Quercetin (Que) is a potent anti-inflammatory and antioxidant flavonoid with cardioprotective potential. However, very little is known about the signaling pathways and gene regulatory proteins Que may interfere with, especially in diabetic cardiomyopathy. Therefore, we aimed to study the potential cardioprotective effects of Que on the cardiac phenotype of type 2 diabetes mellitus (T2DM) accompanied by obesity. METHODS For this experiment, we used Zucker Diabetic Fatty rats (fa/fa) and their age-matched lean controls (fa/+) that were treated with either vehicle or 20 mg/kg/day of Que for 6 weeks. Animals underwent echocardiographic (echo) examination before the first administration of Que and after 6 weeks. RESULTS After the initial echo examination, the diabetic rats showed increased E/A ratio, a marker of left ventricular (LV) diastolic dysfunction, in comparison to the control group which was selectively reversed by Que. Following the echo analysis, Que reduced LV wall thickness and exhibited an opposite effect on LV luminal area. In support of these results, the total collagen content measured by hydroxyproline assay was decreased in the LVs of diabetic rats treated with Que. The follow-up immunoblot analysis of proteins conveying cardiac remodeling pathways revealed that Que was able to interfere with cardiac pro-hypertrophic signaling. In fact, Que reduced relative protein expression of pro-hypertrophic transcriptional factor MEF2 and its counter-regulator HDAC4 along with pSer246-HDAC4. Furthermore, Que showed potency to decrease GATA4 transcription factor, NFAT3 and calcineurin, as well as upstream extracellular signal-regulated kinase Erk5 which orchestrates several pro-hypertrophic pathways. DISCUSSION In summary, we showed for the first time that Que ameliorated pro-hypertrophic signaling on the level of epigenetic regulation and targeted specific upstream pathways which provoked inhibition of pro-hypertrophic signals in ZDF rats. Moreover, Que mitigated T2DM and obesity-induced diastolic dysfunction, therefore, might represent an interesting target for future research on novel cardioprotective agents.
Collapse
Affiliation(s)
- Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Csaba Horvath
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adrian Szobi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Adriana Duris-Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- *Correspondence: Tomas Rajtik, ; Monika Bartekova,
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Tomas Rajtik, ; Monika Bartekova,
| |
Collapse
|