1
|
Khan S, Do CW, Ho EA. Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. Drug Deliv Transl Res 2025; 15:1828-1876. [PMID: 39674854 DOI: 10.1007/s13346-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Emmanuel A Ho
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
2
|
El-Kattan N, Ibrahim MA, Emam AN, Metwally K, Youssef FS, Nassar NA, Mansour AS. Evaluation of the antimicrobial activity of chitosan- and curcumin-capped copper oxide nanostructures against multi-drug-resistant microorganisms. NANOSCALE ADVANCES 2025; 7:2988-3007. [PMID: 40182310 PMCID: PMC11962744 DOI: 10.1039/d4na00955j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The emergence of multi-drug-resistant microorganisms presents a serious threat to infection control, for which new antimicrobial strategies are urgently needed. Herein, the antimicrobial activities of copper oxide nanoparticles capped with curcumin (Cur-CuO NPs) and copper oxide nanoparticles capped with chitosan (CS-CuO NPs) were investigated. They were prepared via the co-precipitation method. A total of 180 clinical ICU patients were found to have 70% Gram-negative and 30% Gram-positive isolates. Antimicrobial susceptibility testing indicated resistance of these isolates to 14 among the 21 tested antibiotics. Physicochemical properties of the curcumin-capped (Cur-CuO NPs) and chitosan-capped (CS-CuO NPs) copper oxide nanoparticles were identified using UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta-potential (ζ), and Fourier transform infrared (FT-IR) spectroscopy. Cur-CuO- and CS-CuO-NPs exhibited potent antimicrobial efficacy, wherein CS-CuO NPs were found to possess a lower minimum inhibitory concentration (MIC) (3.9-15.6 μg mL-1) than Cur-CuO NPs (14.5-31.2 μg mL-1). Biocompatibility assay showed that Cur-CuO NPs were safer with an IC50 dose of 74.17 μg mL-1 than CS-CuO NPs with an IC50 dose of 41.01 μg mL-1. Results revealed that the Cur-CuO- and CS-CuO-NPs have the potential to be safely used as effective antimicrobial agents in clinical applications at low concentrations (6.25-12.5 μg mL-1).
Collapse
Affiliation(s)
- Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes Giza Egypt
| | - Mostafa A Ibrahim
- Production and R&D Unit, NanoFab Technology Company 6th October City Giza Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
| | - Khaled Metwally
- Genetics Department, Faculty of Agriculture, Ain Shams University P.O. Box 68, Hadayek Shoubra 11241 Cairo Egypt
| | - Fady Sayed Youssef
- Department of Pharmacology Faculty of Veterinary Medicine, Cairo University 12211 Giza Egypt
| | | | - Ahmed S Mansour
- Department of Laser Applications in Meteorology, Chemistry and Agriculture, National Institute of Laser Enhanced Sciences (NILES), Cairo University Cairo Egypt
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University Zayed City Giza Egypt
| |
Collapse
|
3
|
Barbalinardo M, Benvenuti E, Gentili D, Chiarini F, Bertacchini J, Roncucci L, Sena P. Differential Cytotoxicity of Surface-Functionalized Silver Nanoparticles in Colorectal Cancer and Ex-Vivo Healthy Colonocyte Models. Cancers (Basel) 2025; 17:1475. [PMID: 40361403 PMCID: PMC12070963 DOI: 10.3390/cancers17091475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Engineered nanomaterials, particularly silver nanoparticles (AgNPs), have emerged as promising tools in oncology due to their ability to enhance tumor targeting and minimize off-target effects. This study investigates the cytotoxic effects of two different types of AgNPs-citrate-coated (AgNPs-cit) and EG6OH-coated (AgNPs-EG6OH)-on colorectal cancer (CRC) cell lines and healthy colonocytes, aiming to assess their potential as selective therapeutic agents. Methods: AgNPs-cit and AgNPs-EG6OH were synthesized and characterized for size and surface properties. LoVo (microsatellite instability-high) and HT-29 (microsatellite stable) CRC cell lines, along with primary colonocyte cultures from healthy mucosal tissues, were exposed to these nanoparticles. Cytotoxicity was assessed through MTT assays, while morphological changes were observed using fluorescence microscopy. Internalization of the nanoparticles was evaluated by confocal microscopy. Results: AgNPs-cit exhibited significant cytotoxicity in LoVo cells, reducing viability and inducing morphological changes indicative of programmed cell death, especially after 48 h of exposure. In contrast, AgNPs-EG6OH showed minimal effects on LoVo cells and no significant toxicity on HT-29 cells or primary colonocytes. Confocal microscopy confirmed nanoparticle internalization, with surface functionalization influencing the distribution patterns within cells. Conclusions: This study demonstrates that surface functionalization significantly influences the cytotoxicity of AgNPs, with citrate-coated nanoparticles showing selective effects on microsatellite instability-high CRC cells. These findings underscore the potential of surface-modified nanoparticles for targeted cancer therapy and highlight the importance of tailoring nanoparticle design to optimize therapeutic efficacy while minimizing off-target effects.
Collapse
Affiliation(s)
- Marianna Barbalinardo
- Consiglio Nazionale Delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (E.B.)
| | - Emilia Benvenuti
- Consiglio Nazionale Delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (E.B.)
| | - Denis Gentili
- Consiglio Nazionale Delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (E.B.)
| | - Francesca Chiarini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Jessika Bertacchini
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Paola Sena
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| |
Collapse
|
4
|
Nguyen TLN, Nguyen NH, Sai CD, Bui Thi VH, Do HQ, Vu TT, Vu DM. Development and characterization of gelatin microgel-stabilized silver nanoparticles loaded with curcumin: Evaluation of antibacterial, antioxidant, and antiproliferative activities. Sci Prog 2025; 108:368504251338628. [PMID: 40296548 PMCID: PMC12041703 DOI: 10.1177/00368504251338628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
ObjectiveCurcumin is a polyphenol extracted from the roots of Curcuma longa L. It is a multifunctional biological substance that has notable antioxidant, anti-inflammatory, anti-cancer, and antibacterial properties, as reported in numerous previous papers. However, curcumin has limited bioavailability due to its low water solubility. Furthermore, pH, temperature, and light all have the potential to decrease curcumin's biopharmaceutical activities. Silver nanoparticles have excellent antibacterial characteristics and are used in various applications. The main objective of this work was to synthesize the gelatin microgel-stabilized silver nanoparticles loaded with curcumin (GelCurAg complex) to increase the biopharmaceutical activities of the complex.MethodsNumerous techniques, including UV-vis spectroscopy, FTIR spectroscopy, Zetasizer Nano instruments, TEM images, and XDR patterns, were used for investigating the characterization of the GelCurAg complex. The various methods, such as the DPPH antioxidant assay, cytotoxicity analysis, and the agar-well diffusion method, were used for the analysis of the biopharmaceutical activities of the GelCurAg complex.ResultsWe successfully synthesized and characterized the GelCurAg complex, consisting of gelatin, curcumin, and silver nanoparticle biofilms using polyvinylpyrrolidone. The average nanoparticle size was 50 nm. The GelCurAg complex improved water solubility and dispersion compared with the single curcumin component. The IC50 value for antioxidant activity was 4.87 μg/mL, and for antiproliferation on SK-MEL-28, it was 3.98 µg/mL. GelCurAg solution provided remarkable antibacterial activities against four bacterial strains: Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The GelCurAg complex showed better antibacterial activities than the single curcumin component, with the antibacterial inhibition zone in the range of 0.9--1.6 cm.ConclusionsThe GelCurAg complex enhanced the solubility and dispersion of curcumin in water while increasing its antibacterial activity compared to curcumin. The GelCurAg complex has excellent biopharmaceutical properties to suggest its various applications in the future.
Collapse
Affiliation(s)
- Thi Le Na Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Ngoc Huyen Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Cong Doanh Sai
- Faculty of Physics, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Viet Ha Bui Thi
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Huu Quyet Do
- Institute of Tropical Ecology, Vietnam-Russia Tropical Center, 63 Nguyen Van Huyen, Nghia Do Ward, Cau Giay District, Hanoi, Vietnam
| | - Thi Thao Vu
- University of Engineering and Technology, Vietnam National University, Hanoi, Cau Giay, Vietnam
| | - Duy Minh Vu
- University of Engineering and Technology, Vietnam National University, Hanoi, Cau Giay, Vietnam
| |
Collapse
|
5
|
Kah G, Chandran R, Abrahamse H. Green silver nanoparticles curcumin conjugate induced photodynamic therapy of lung cancer and lung cancer stem cells. RSC Adv 2025; 15:5020-5041. [PMID: 39957816 PMCID: PMC11827557 DOI: 10.1039/d4ra06035k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025] Open
Abstract
Lung cancer remains a dreaded disease globally due to its high mortality rates. New cases of lung cancer are estimated at 1.8 million a year, with about 1.6 million deaths. Conventional treatment regimens are inefficient due to their failure to eradicate lung cancer stem cells (LCSCs). LCSCs are noted to self-renew, cause relapse, strengthen metastasis, preserve tumorigenicity, and are very resistant to treatment. This shows the need for a novel treatment modality that can target lung cancer and its stem cells. In this study, a photoactive curcumin-silver nanoparticle-polymer conjugate (Cum-PEG-BpAgNPs) was developed to enhance lung cancer photodynamic therapy (PDT). Lung cancer cells and LCSCs were treated with Cum-PEG-BpAgNPs followed by light irradiation at 470 nm. Post-analytical assays including 3-[4,5-dimethylthiazole-2yl]-2,5-diphenyl tetrazolium bromide, lactate dehydrogenase, adenosine triphosphate, ROS by DCFH-DA, annexin V-FITC/PI cell death studies, and morphological analysis were performed. The characterization analysis confirmed the bio-formulation of Cum-PEG-BpAgNPs conjugate. The LCSCs characterization indicated the presence of LCSCs in the isolated cell population. The biochemical assays post-PDT revealed substantial cytotoxicity when lower concentrations of Cum-PEG-BpAgNPs were used. The IC50 value of the conjugate was noted at 4.014 μg mL-1 and 2.373 μg mL-1 for lung cancer cells and LCSCs, respectively. An elevated ROS production was induced, leading to apoptosis post-PDT. Therefore, Cum-PEG-BpAgNPs could be used in the mediation PDT to eliminate lung cancer cells effectively.
Collapse
Affiliation(s)
- Glory Kah
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg Johannesburg 2028 South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg Johannesburg 2028 South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg Johannesburg 2028 South Africa
| |
Collapse
|
6
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
7
|
Porro C, Panaro MA. Recent Progress in Understanding the Health Benefits of Curcumin. Molecules 2023; 28:molecules28052418. [PMID: 36903663 PMCID: PMC10005252 DOI: 10.3390/molecules28052418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Nutrients and their potential benefits are a new field of study in modern medicine due to their positive impact on health [...].
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
- Correspondence:
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
8
|
Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354:465-488. [PMID: 36642250 DOI: 10.1016/j.jconrel.2023.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Obinna Sabastine Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Stella Amarachi Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Enugu State, Nigeria; Pharmacology and Physiology Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Prosper Emeh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Pharmaceutics and Pharmaceutical Technology, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria.
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom.
| |
Collapse
|
9
|
Mandal D, Sarkar T, Chakraborty R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl Biochem Biotechnol 2023; 195:1319-1513. [PMID: 36219334 PMCID: PMC9551254 DOI: 10.1007/s12010-022-04132-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
Collapse
Affiliation(s)
- Debopriya Mandal
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
10
|
García-Cuellar CM, Hernández-Delgadillo R, Torres-Betancourt JA, Solis-Soto JM, Meester I, Sánchez-Pérez Y, Pineda-Aguilar N, Nakagoshi-Cepeda SE, Sánchez-Nájera RI, Nakagoshi-Cepeda MAA, Chellam S, Cabral-Romero C. Cumulative antitumor effect of bismuth lipophilic nanoparticles and cetylpyridinium chloride in inhibiting the growth of lung cancer. J Appl Biomater Funct Mater 2023; 21:22808000231161177. [PMID: 36942951 DOI: 10.1177/22808000231161177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE To determine the combined antitumor effect of bismuth lipophilic nanoparticles (BisBAL NP) and cetylpyridinium chloride (CPC) on human lung tumor cells. MATERIAL AND METHODS The human lung tumor cells A549 were exposed to 1-100 µM BisBAL NP or CPC, either separately or in a 1:1 combination. Cell viability was measured with the PrestoBlue assay, the LIVE/DEAD assay, and fluorescence microscopy. The integrity and morphology of cellular microtubules were analyzed by immunofluorescence. RESULTS A 24-h exposure to 1 µM solutions reduced A549 growth with 21.5% for BisBAL NP, 70.5% for CPC, and 92.4% for the combination (p < 0.0001), while a 50 µM BisBAL NP/CPC mixture inhibited cell growth with 99% (p < 0.0001). BisBAL NP-curcumin conjugates were internalized within 30 min of exposure and could be traced within the nucleus of tumor cells within 2 h. BisBAL NP, but not CPC, interfered with microtubule organization, thus interrupting cell replication, similar to the action mechanism of docetaxel. CONCLUSION The growth inhibition of A549 human tumor cells by BisBAL NP and CPC was cumulative as of 1 µM. The BisBAL NP/CPC combination may constitute an innovative and cost-effective alternative for treating human lung cancer.
Collapse
Affiliation(s)
| | - Rene Hernández-Delgadillo
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | | | - Juan Manuel Solis-Soto
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Irene Meester
- Departamento de Ciencias Básicas, Universidad de Monterrey, San Pedro Garza García, México
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Nayely Pineda-Aguilar
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Unidad Monterrey, Nuevo León, México
| | - Sergio Eduardo Nakagoshi-Cepeda
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Rosa Isela Sánchez-Nájera
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | | | | | - Claudio Cabral-Romero
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| |
Collapse
|
11
|
Segneanu AE, Vlase G, Lukinich-Gruia AT, Herea DD, Grozescu I. Untargeted Metabolomic Approach of Curcuma longa to Neurodegenerative Phytocarrier System Based on Silver Nanoparticles. Antioxidants (Basel) 2022; 11:2261. [PMID: 36421447 PMCID: PMC9686783 DOI: 10.3390/antiox11112261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 08/26/2023] Open
Abstract
Curcuma is one of the most famous medicinal and tropical aromatic plants. Its health benefits have been appreciated and exploited in traditional Asian medicine since ancient times. Various studies have investigated its complex chemical composition and demonstrated the remarkable therapeutic properties of curcuma's phytoconstituents. Oxidative stress is a decisive driving factor triggering numerous pathologies (neurodegenerative, psychiatric and cardiovascular diseases; diabetes; tumors, etc.). Numerous recent studies have focused on the use of natural compounds and nanomaterials as innovative molecular targeting agents as effective therapeutic strategies. In this study, we report, for the first time, the development of a simple target phytocarrier system that capitalizes on the bioactive properties of curcuma and AgNPs. The complete metabolic profile of curcuma was determined based on gas chromatography-mass spectrometry (GC-MS) and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS). A total of 80 metabolites were identified under mass spectra (MS)-positive mode from 10 secondary metabolite categories: terpenoids, amino acids, diarylheptanoids, flavonoids, phenolic acids, steroids, fatty acids, coumarins, alkaloids and miscellaneous. In addition, the biological activity of each class of metabolites was discussed. A comprehensive characterization (FT-IR, UV-Vis, DLS, SEM, TEM, EDS, zeta potential and XRD) was performed to study the morphostructural properties of this new phytocarrier system. Antioxidant activity of the new phytocarrier system was evaluated using a combination of in vitro methods (total phenolic assay, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and cyclic voltammetric method (Trolox equivalent antioxidant capacity (TEAC) electrochemical assay)). Antioxidants assays showed that the phytocarrier system exhibits superior antioxidant properties to those of its components, i.e., curcuma or citrate-coated-AgNPs. These data confirm the potential to enhance relevant theoretical knowledge in the area of innovative antioxidant agents, with potential application in neurodegenerative therapeutic strategies.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania
- Res. Ctr. Thermal Anal Environm Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | | | - Dumitru-Daniel Herea
- National Institute of Research and Development for Technical Physics, 47 Mangeron Blvd, 700050 Iasi, Romania
| | - Ioan Grozescu
- CAICON Department, University Politehnica Timisoara, 2 P-ta Victoriei, 300006 Timisoara, Romania
| |
Collapse
|
12
|
Trendafilova I, Chimshirova R, Momekova D, Petkov H, Koseva N, Petrova P, Popova M. Curcumin and Capsaicin-Loaded Ag-Modified Mesoporous Silica Carriers: A New Alternative in Skin Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3075. [PMID: 36080112 PMCID: PMC9458240 DOI: 10.3390/nano12173075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Biologically active substances of natural origin offer a promising alternative in skin disease treatment in comparison to synthetic medications. The limiting factors for the efficient application of natural compounds, such as low water solubility and low bioavailability, can be easily overcome by the development of suitable delivery systems. In this study, the exchange with the template procedure was used for the preparation ofa spherical silver-modified mesoporous silica nanocarrier. The initial and drug-loaded formulations are fully characterized by different physico-chemical methods. The incipient wetness impregnation method used to load health-promoting agents, curcumin, and capsaicin in Ag-modified carriers separately or in combinationresulted in high loading efficiency (up to 33 wt.%). The interaction between drugs and carriers was studied by ATR-FTIR spectroscopy. The release experiments of both active substances from the developed formulations were studied in buffers with pH 5.5, and showed improved solubility. Radical scavenging activity and ferric-reducing antioxidant power assays were successfully used for the evaluation of the antiradical and antioxidant capacity of the curcumin or/and capsaicin loaded on mesoporous carriers. Formulations containing a mixture of curcumin and capsaicin were characterized bypotentiation of their antiproliferative effect against maligning cells, and it was confirmed that the system for simultaneous delivery of both drugs has lower IC50 values than the free substances.The antibacterial tests showed better activity of the obtained delivery systems in comparison with the pure curcumin and capsaicin. Considering the obtained results, it can be concluded that the obtained delivery systems are promising for potential dermal treatment.
Collapse
Affiliation(s)
- Ivalina Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ralitsa Chimshirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Denitsa Momekova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Hristo Petkov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Neli Koseva
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Margarita Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
13
|
Different antibacterial and photocatalyst functions for herbal and bacterial synthesized silver and copper/copper oxide nanoparticles/nanocomposites: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
El-Kattan N, Emam AN, Mansour AS, Ibrahim MA, Abd El-Razik AB, Allam KAM, Riad NY, Ibrahim SA. Curcumin assisted green synthesis of silver and zinc oxide nanostructures and their antibacterial activity against some clinical pathogenic multi-drug resistant bacteria. RSC Adv 2022; 12:18022-18038. [PMID: 35874032 PMCID: PMC9239055 DOI: 10.1039/d2ra00231k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
According to WHO warnings, the antibiotic resistance crisis is a severe health issue in the 21st century, attributed to the overuse and misuse of these medications. Consequently, the dramatic spreading rate of the drug-resistant microbial pathogens strains. The microbiological, biochemical tests and antibiotic sensitivity identified the bacteria's multi-drug resistance (MDR). About 150 different clinical samples were taken from hospitalized patients, both males, and females, ranging from 9 to 68 years. Gram-negative strains were (70.0%), while Gram-positive isolates were (30.0%). Among sixteen antibiotics, antibiotic susceptibility of imipenem was found to be the most efficient drug against most of the Gram-negative and Gram-positive isolates, followed by meropenem, depending on the culture and sensitivity results. All the experimental bacteria showed multidrug-resistant phenomena. In this study, green synthesized silver (Cur-Ag NPs) and zinc oxide (Cur-ZnO NPs) nanoparticles in the presence of curcumin extract. In addition, their physicochemical properties have been characterized using different techniques such as UV-Vis spectroscopy, transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and colloidal properties techniques. Furthermore, curcumin-capped silver nanoparticles (AgNPs) exhibited solid antimicrobial action against the experimental bacterial isolates, except Proteus vulgaris (i.e., P. vulgaris). Curcumin-capped zinc oxide nanoparticles (ZnO NPs) found antimicrobial activity against all tested strains. Finally, the minimum inhibitory concentration exhibited values from 3.9 to 15.6 μg ml-1, which is too small compared to other traditional antibiotics. In addition, the green-synthesized Cur-Ag NPs and Cur-ZnO NPs showed good biocompatibility.
Collapse
Affiliation(s)
- Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes Giza Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre El Bohouth St., Dokki 12622 Cairo Egypt
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University Zayed City Giza Egypt
| | - Ahmed S Mansour
- Department of Laser Applications in Meteorology, Chemistry and Agriculture, National Institute of Laser Enhanced Sciences (NILES), Cairo University Cairo Egypt
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University Zayed City Giza Egypt
| | - Mostafa A Ibrahim
- Production and R&D Unit, NanoFab Technology Company 6th October City Giza Egypt
| | - Ashraf B Abd El-Razik
- Genetics Department, Faculty of Agriculture, Ain Shams University P.O. Box 68, Hadayek Shoubra 11241 Cairo Egypt
| | - Kamilia A M Allam
- Department of Epidemiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes Giza
| | - Nadia Youssef Riad
- Department of Clinical Pathology, National Heart Institute, General Organization for Teaching Hospitals and Institutes Giza Egypt
| | - Samir A Ibrahim
- Genetics Department, Faculty of Agriculture, Ain Shams University P.O. Box 68, Hadayek Shoubra 11241 Cairo Egypt
| |
Collapse
|
15
|
Zingale E, Romeo A, Rizzo S, Cimino C, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Fluorescent Nanosystems for Drug Tracking and Theranostics: Recent Applications in the Ocular Field. Pharmaceutics 2022; 14:pharmaceutics14050955. [PMID: 35631540 PMCID: PMC9147643 DOI: 10.3390/pharmaceutics14050955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
The greatest challenge associated with topical drug delivery for the treatment of diseases affecting the posterior segment of the eye is to overcome the poor bioavailability of the carried molecules. Nanomedicine offers the possibility to overcome obstacles related to physiological mechanisms and ocular barriers by exploiting different ocular routes. Functionalization of nanosystems by fluorescent probes could be a useful strategy to understand the pathway taken by nanocarriers into the ocular globe and to improve the desired targeting accuracy. The application of fluorescence to decorate nanocarrier surfaces or the encapsulation of fluorophore molecules makes the nanosystems a light probe useful in the landscape of diagnostics and theranostics. In this review, a state of the art on ocular routes of administration is reported, with a focus on pathways undertaken after topical application. Numerous studies are reported in the first section, confirming that the use of fluorescent within nanoparticles is already spread for tracking and biodistribution studies. The first section presents fluorescent molecules used for tracking nanosystems’ cellular internalization and permeation of ocular tissues; discussions on the classification of nanosystems according to their nature (lipid-based, polymer-based, metallic-based and protein-based) follows. The following sections are dedicated to diagnostic and theranostic uses, respectively, which represent an innovation in the ocular field obtained by combining dual goals in a single administration system. For its great potential, this application of fluorescent nanoparticles would experience a great development in the near future. Finally, a brief overview is dedicated to the use of fluorescent markers in clinical trials and the market in the ocular field.
Collapse
Affiliation(s)
- Elide Zingale
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Alessia Romeo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Salvatore Rizzo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Cinzia Cimino
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Angela Bonaccorso
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
- Correspondence:
| |
Collapse
|