1
|
Zhang R, Zhang Z, Xie L, Yu Z, Gao R, Zhang ZR, Zhang Y, Wei X, Chen Y, Jiao S, Gao Y, Guo JP. In vitro analysis of the molecular mechanisms of ursolic acid against ovarian cancer. BMC Complement Med Ther 2025; 25:65. [PMID: 39984915 PMCID: PMC11846399 DOI: 10.1186/s12906-025-04808-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
Ovarian cancer is one of most common gynaecologic malignancy and ranks third in cancer-related deaths among women. Ursolic acid (UA) is a pharmacologically active pentacyclic triterpenoid isolated from a large variety of vegetables, fruits and many traditional medicinal plants. However, the mechanism of action of UA in inhibiting the proliferation of ovarian cancer cells remains unclear. Consequently, this experiment was designed to elucidate the mechanism of action of UA in inhibiting the proliferation of ovarian cancer cells in greater detail.The results indicated that UA was capable of effectively inhibiting the proliferation, migration, and colony formation of ovarian cancer cells.UA was observed to up-regulate Bcl-2-associated X protein(BAX)and cysteinyl aspartate specific proteinase 3 (Caspase3) expression and down-regulating B-cell lymphoma-2(Bcl-2) expression.Meanwhile, UA up-regulated Sequestosome 1(p62)expression and down-regulated coiled-coil, moesin-like BCL2-interacting protein(Becline1), microtubule-associated proteins light chain 3(LC3), Phosphoinositide 3-Kinase(PI3K), andProtein Kinase B( AKT) expression, thus effectively inhibiting autophagy in ovarian cancer cells.Furthermore, UA upregulated pancreatic ER kinase (PKR)-like ER kinase (PERK), eukaryotic translation initiation factor 2 A(eIF2α), and The C/EBP Homologous Protein(CHOP) expression.In addition UA upregulates PERK, eIF2α, and CHOP expression and effectively promotes endoplasmic reticulum stress(ERS).In conclusion, UA can inhibit ovarian cancer cell proliferation, migration, colony formation, and may inhibit tumor cell autophagy by promoting tumor cell ERS, and ultimately promote ovarian cancer cell apoptosis.
Collapse
Affiliation(s)
- Ru Zhang
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhaopeng Zhang
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Lulu Xie
- Affiliated Hospital, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ziqing Yu
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Rui Gao
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhi-Run Zhang
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ying Zhang
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuyang Wei
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yang Chen
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Sue Jiao
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yiren Gao
- Affiliated Hospital, Changchun University of Traditional Chinese Medicine, Changchun, China.
| | - Jun-Peng Guo
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China.
| |
Collapse
|
2
|
Yang X, Liang B, Zhang L, Zhang M, Ma M, Qing L, Yang H, Huang G, Zhao J. Ursolic acid inhibits the proliferation of triple‑negative breast cancer stem‑like cells through NRF2‑mediated ferroptosis. Oncol Rep 2024; 52:94. [PMID: 38847277 PMCID: PMC11184361 DOI: 10.3892/or.2024.8753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid that has been found in a broad variety of fruits, spices and medicinal plants, has various biological effects such as reducing inflammation, protecting cells from damage, and preserving brain function. However, its impact on ferroptosis in cancer stem‑like cells remains unexplored. The present study investigated the effect of UA on MDA‑MB‑231 and BT‑549 cell‑derived triple‑negative breast CSCs (BCSCs) and its potential ferroptosis pathway. The effects of ferroptosis on BCSCs were demonstrated by the detection of ferroptosis‑related indexes including the intracellular level of glutathione, malondialdehyde, reactive oxygen species and iron. The effects of UA on the biological behaviors of BCSCs were analyzed by Cell Counting Kit‑8, stemness indexes detection and mammosphere formation assay. The mechanism of UA induction on BCSCs was explored by reverse transcription‑quantitative PCR and western blotting. BALB/c‑nude mice were subcutaneously injected with MDA‑MB‑231‑derived BCSCs to establish xenograft models to detect the effects of UA in vivo. The results revealed that BCSCs have abnormal iron metabolism and are less susceptible to ferroptosis. UA effectively reduces the stemness traits and proliferation of BCSCs in spheroids and mice models by promoting ferroptosis. It was observed that UA stabilizes Kelch‑like ECH‑associated protein 1 and suppresses nuclear factor erythroid‑related factor 2 (NRF2) activation. These findings suggested that the ability of UA to trigger ferroptosis through the inhibition of the NRF2 pathway could be a promising approach for treating BCSCs, potentially addressing metastasis and drug resistance in triple‑negative breast cancer (TNBC). This expands the clinical applications of UA and provides a theoretical basis for its use in TNBC treatment.
Collapse
Affiliation(s)
- Xinhua Yang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lisha Zhang
- The Preparation Center, Nanchang Hongdu Hospital of TCM, Nanchang, Jiangxi 330013, P.R. China
| | - Mingzhu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Ming Ma
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lijuan Qing
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Jian Zhao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| |
Collapse
|
3
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Liu G, Qin P, Cheng X, Wu L, Wang R, Gao W. Ursolic acid: biological functions and application in animal husbandry. Front Vet Sci 2023; 10:1251248. [PMID: 37964910 PMCID: PMC10642196 DOI: 10.3389/fvets.2023.1251248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Ursolic acid (UA) is a plant-derived pentacyclic triterpenoid with 30 carbon atoms. UA has anti-inflammatory, antioxidative, antimicrobial, hepato-protective, anticancer, and other biological activities. Most studies on the biological functions of UA have been performed in mammalian cell (in vitro) and rodent (in vivo) models. UA is used in animal husbandry as an anti-inflammatory and antiviral agent, as well as for enhancing the integrity of the intestinal barrier. Although UA has been shown to have significant in vitro bacteriostatic effects, it is rarely used in animal nutrition. The use of UA as a substitute for oral antibiotics or as a novel feed additive in animal husbandry should be considered. This review summarizes the available data on the biological functions of UA and its applications in animal husbandry.
Collapse
Affiliation(s)
- Guanhui Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Qin
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Xinying Cheng
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Lifei Wu
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| | - Ruoning Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Wei Gao
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| |
Collapse
|
5
|
Cai C, Zhi Y, Xie C, Geng S, Sun F, Ji Z, Zhang P, Wang H, Tang J. Ursolic acid-downregulated long noncoding RNA ASMTL-AS1 inhibits renal cell carcinoma growth via binding to HuR and reducing vascular endothelial growth factor expression. J Biochem Mol Toxicol 2023; 37:e23389. [PMID: 37300450 DOI: 10.1002/jbt.23389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
It has been reported ursolic acid (UA), one of the naturally abundant pentacyclic triterpenes, possesses a wide range of biological activities including anti-inflammatory, anti-atherosclerotic, and anticancer properties. Renal cell carcinoma (RCC) is a severe malignancy due to its asymptomatically spreading ability. Our study aimed to investigate the role and molecular mechanism of UA in RCC. RCC cell proliferation, migration, invasion, and angiogenesis were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Transwell, and tube formation assays. Xenograft tumor models were established to confirm the role of UA and long noncoding RNA ASMTL antisense RNA 1 (ASMTL-AS1) in vivo. Expression levels of ASMTL-AS1 and vascular endothelial growth factor (VEGF) were measured using reverse transcriptase quantitative polymerase chain reaction and western blot analysis. The interaction probabilities of ASMTL-AS1 or VEGF with RNA-binding protein human antigen R (HuR) were verified by RNA immunoprecipitation experiment. The half-life period of messenger RNA (mRNA) was determined using actinomycin D. UA inhibited RCC cell growth in vivo and tumorigenesis in vitro. ASMTL-AS1 was highly expressed in RCC cell lines. Of note, UA downregulated ASMTL-AS1 expression, and overexpressed ASMTL-AS1 reversed the UA-induced suppression on RCC cell migration, invasion, and tube formation. Additionally, ASMTL-AS1 bound to HuR to maintain the stability of VEGF mRNA. Rescue experiments showed that the suppressed malignancy of RCC cells mediated by ASMTL-AS1 knockdown was counteracted by overexpression of VEGF. Moreover, silenced ASMTL-AS1 inhibited RCC tumor growth and metastasis in vivo. The obtained data suggest UA as a promising therapeutic agent to attenuate the development of RCC via regulation of the targeted molecules.
Collapse
Affiliation(s)
- Chengkuan Cai
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Yunlai Zhi
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Cheng Xie
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Shen Geng
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Fanghu Sun
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Zhengshuai Ji
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Pengcheng Zhang
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Hui Wang
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Jingyuan Tang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Yap WH, Goh BH. Editorial: Biofunctional Molecule Exploratory Research on Application in Food and Health. Molecules 2023; 28:5089. [PMID: 37446751 DOI: 10.3390/molecules28135089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Biofunctional molecules with pharmacological activities are reported in various fields of application, including in the pharmaceutical, cosmetics, nutraceuticals, agriculture, and food industries [...].
Collapse
Affiliation(s)
- Wei Hsum Yap
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor's University, Subang Jaya 47500, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor's University, Subang Jaya 47500, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Zhao H, Tang S, Tao Q, Ming T, Lei J, Liang Y, Peng Y, Wang M, Liu M, Yang H, Ren S, Xu H. Ursolic Acid Suppresses Colorectal Cancer by Down-Regulation of Wnt/β-Catenin Signaling Pathway Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3981-3993. [PMID: 36826439 DOI: 10.1021/acs.jafc.2c06775] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Overwhelming evidence points to an abnormally active Wnt/β-catenin signaling as a key player in colorectal cancer (CRC) pathogenesis. Ursolic acid (UA) is a pentacyclic triterpenoid that has been found in a broad variety of fruits, spices, and medicinal plants. UA has been shown to have potent bioactivity against a variety of cancers, including CRC, with the action mechanism obscure. Our study tried to learn more about the efficacy of UA on CRC and its functional mechanism amid the Wnt/β-catenin signaling cascade. We determined the efficacy of UA on CRC SW620 cells with respect to the proliferation, migration, clonality, apoptosis, cell cycle, and Wnt/β-catenin signaling cascade, with assessment of the effect of UA on normal colonic NCM460 cells. Also, the effects of UA on the tumor development, apoptosis, cell cycle, and Wnt/β-catenin signaling axis were evaluated after a subcutaneous SW620 xenograft tumor model was established in mice. In this work, we showed that UA drastically suppressed proliferation, migration, and clonality; induced apoptosis; and arrested the cell cycle at the G0/G1 phase of SW620 cells, without the influence on NCM460 cells, accompanied by weakened activity of the Wnt/β-catenin signaling pathway. Besides, UA markedly deterred the growth of the xenograft tumor, ameliorated pathological features, triggered apoptosis, and arrested the cell cycle in xenograft CRC tissue, by lessening the Wnt/β-catenin signaling cascade. Overall, UA may inhibit the malignant phenotype, induce apoptosis, and arrest the cell cycle of CRC, potentially by attenuating the Wnt/β-catenin signaling axis, providing insights into the mechanism for the potency of UA on CRC.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
8
|
Ursolic Acid Impairs Cellular Lipid Homeostasis and Lysosomal Membrane Integrity in Breast Carcinoma Cells. Cells 2022; 11:cells11244079. [PMID: 36552844 PMCID: PMC9776894 DOI: 10.3390/cells11244079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, thus the search for new cancer therapies is of utmost importance. Ursolic acid is a naturally occurring pentacyclic triterpene with a wide range of pharmacological activities including anti-inflammatory and anti-neoplastic effects. The latter has been assigned to its ability to promote apoptosis and inhibit cancer cell proliferation by poorly defined mechanisms. In this report, we identify lysosomes as the essential targets of the anti-cancer activity of ursolic acid. The treatment of MCF7 breast cancer cells with ursolic acid elevates lysosomal pH, alters the cellular lipid profile, and causes lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol. Lysosomal membrane permeabilization precedes the essential hallmarks of apoptosis placing it as an initial event in the cascade of effects induced by ursolic acid. The disruption of the lysosomal function impairs the autophagic pathway and likely partakes in the mechanism by which ursolic acid kills cancer cells. Furthermore, we find that combining treatment with ursolic acid and cationic amphiphilic drugs can significantly enhance the degree of lysosomal membrane permeabilization and cell death in breast cancer cells.
Collapse
|
9
|
Qu PR, Jiang ZL, Song PP, Liu LC, Xiang M, Wang J. Saponins and their derivatives: Potential candidates to alleviate anthracycline-induced cardiotoxicity and multidrug resistance. Pharmacol Res 2022; 182:106352. [PMID: 35835369 DOI: 10.1016/j.phrs.2022.106352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Anthracyclines (ANTs) continue to play an irreplaceable role in oncology treatment. However, the clinical application of ANTs has been limited. In the first place, ANTs can cause dose-dependent cardiotoxicity such as arrhythmia, cardiomyopathy, and congestive heart failure. In the second place, the development of multidrug resistance (MDR) leads to their chemotherapeutic failure. Oncology cardiologists are urgently searching for agents that can both protect the heart and reverse MDR without compromising the antitumor effects of ANTs. Based on in vivo and in vitro data, we found that natural compounds, including saponins, may be active agents for other both natural and chemical compounds in the inhibition of anthracycline-induced cardiotoxicity (AIC) and the reversal of MDR. In this review, we summarize the work of previous researchers, describe the mechanisms of AIC and MDR, and focus on revealing the pharmacological effects and potential molecular targets of saponins and their derivatives in the inhibition of AIC and the reversal of MDR, aiming to encourage future research and clinical trials.
Collapse
Affiliation(s)
- Pei-Rong Qu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhi-Lin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Ping-Ping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medicine Sciences, Beijing 100013, China
| | - Lan-Chun Liu
- Beijing University of traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|