1
|
Oduro-Kwateng E, Soliman ME. DON/DRP-104 as potent serine protease inhibitors implicated in SARS-CoV-2 infection: Comparative binding modes with human TMPRSS2 and novel therapeutic approach. J Cell Biochem 2024; 125:e30528. [PMID: 38284235 DOI: 10.1002/jcb.30528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Human transmembrane serine protease 2 (TMPRSS2) is an important member of the type 2 transmembrane serine protease (TTSP) family with significant therapeutic markings. The search for potent TMPRSS2 inhibitors against severe acute respiratory syndrome coronavirus 2 infection with favorable tissue specificity and off-site toxicity profiles remains limited. Therefore, probing the anti-TMPRSS2 potential of enhanced drug delivery systems, such as nanotechnology and prodrug systems, has become compelling. We report the first in silico study of TMPRSS2 against a prodrug, [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] also known as DRP-104 synthesized from 6-Diazo-5-oxo-l-norleucine (DON). We performed comparative studies on DON and DRP-104 against a clinically potent TMPRSS2 inhibitor, nafamostat, and a standard serine protease inhibitor, 4-(2-Aminoethyl) benzenesulfonyl fluoride (AEBSF) against TMPRSS2 and found improved TMPRSS2 inhibition through synergistic binding of the S1/S1' subdomains. Both DON and DRP-104 had better thermodynamic profiles than AEBSF and nafamostat. DON was found to confer structural stability with strong positive correlated inter-residue motions, whereas DRP-104 was found to confer kinetic stability with restricted residue displacements and reduced loop flexibility. Interestingly, the Scavenger Receptor Cysteine-Rich (SRCR) domain of TMPRSS2 may be involved in its inhibition mechanics. Two previously unidentified loops, designated X (270-275) and Y (293-296) underwent minimal and major structural transitions, respectively. In addition, residues 273-277 consistently transitioned to a turn conformation in all ligated systems, whereas unique transitions were identified for other transitioning residue groups in each TMPRSS2-inhibitor complex. Intriguingly, while both DON and DRP-104 showed similar loop transition patterns, DRP-104 preserved loop structural integrity. As evident from our systematic comparative study using experimentally/clinically validated inhibitors, DRP-104 may serve as a potent and novel TMPRSS2 inhibitor and warrants further clinical investigation.
Collapse
Affiliation(s)
- Ernest Oduro-Kwateng
- School of Health Sciences, Molecular Bio-Computation and Drug Design Research Group, Westville Campus, University of KwaZulu Natal, Durban, South Africa
| | - Mahmoud E Soliman
- School of Health Sciences, Molecular Bio-Computation and Drug Design Research Group, Westville Campus, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
2
|
Reus P, Guthmann H, Uhlig N, Agbaria M, Issmail L, Eberlein V, Nordling-David MM, Jbara-Agbaria D, Ciesek S, Bojkova D, Cinatl J, Burger-Kentischer A, Rupp S, Zaliani A, Grunwald T, Gribbon P, Kannt A, Golomb G. Drug repurposing for the treatment of COVID-19: Targeting nafamostat to the lungs by a liposomal delivery system. J Control Release 2023; 364:654-671. [PMID: 37939853 DOI: 10.1016/j.jconrel.2023.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Despite tremendous global efforts since the beginning of the COVID-19 pandemic, still only a limited number of prophylactic and therapeutic options are available. Although vaccination is the most effective measure in preventing morbidity and mortality, there is a need for safe and effective post-infection treatment medication. In this study, we explored a pipeline of 21 potential candidates, examined in the Calu-3 cell line for their antiviral efficacy, for drug repurposing. Ralimetinib and nafamostat, clinically used drugs, have emerged as attractive candidates. Due to the inherent limitations of the selected drugs, we formulated targeted liposomes suitable for both systemic and intranasal administration. Non-targeted and targeted nafamostat liposomes (LipNaf) decorated with an Apolipoprotein B peptide (ApoB-P) as a specific lung-targeting ligand were successfully developed. The developed liposomal formulations of nafamostat were found to possess favorable physicochemical properties including nano size (119-147 nm), long-term stability of the normally rapidly degrading compound in aqueous solution, negligible leakage from the liposomes upon storage, and a neutral surface charge with low polydispersity index (PDI). Both nafamostat and ralimetinib liposomes showed good cellular uptake and lack of cytotoxicity, and non-targeted LipNaf demonstrated enhanced accumulation in the lungs following intranasal (IN) administration in non-infected mice. LipNaf retained its anti-SARS-CoV 2 activity in Calu 3 cells with only a modest decrease, exhibiting complete inhibition at concentrations >100 nM. IN, but not intraperitoneal (IP) treatment with targeted LipNaf resulted in a trend to reduced viral load in the lungs of K18-hACE2 mice compared to targeted empty Lip. Nevertheless, upon removal of outlier data, a statistically significant 1.9-fold reduction in viral load was achieved. This observation further highlights the importance of a targeted delivery into the respiratory tract. In summary, we were able to demonstrate a proof-of-concept of drug repurposing by liposomal formulations with anti-SARS-CoV-2 activity. The biodistribution and bioactivity studies with LipNaf suggest an IN or inhalation route of administration for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Philipp Reus
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany; Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Hadar Guthmann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Majd Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Mirjam M Nordling-David
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Doaa Jbara-Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Sandra Ciesek
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Denisa Bojkova
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Anke Burger-Kentischer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Innovation Center TheraNova, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute for Clinical Pharmacology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Gershon Golomb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Hernández-Mitre MP, Won H, Wallis SC, Parker SL, Roberts JA. Stability of nafamostat in intravenous infusion solutions, human whole blood and extracted plasma: implications for clinical effectiveness studies. Bioanalysis 2023; 15:673-681. [PMID: 37272603 DOI: 10.4155/bio-2023-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Aim: To describe the stability of nafamostat in infusion solutions, during blood sample collection and in extracted plasma samples in the autosampler. Methods: Nafamostat infusion solutions were stored at room temperature in the light for 24 h. For sample collection stability, fresh blood spiked with nafamostat was subjected to combinations of anticoagulants, added esterase inhibitor and temperature. Nafamostat was monitored in the extracted plasma samples in the autosampler. Results: Nafamostat was stable in infusion solutions. Nafamostat in whole blood was stable for 3 h before centrifugation when collected in sodium fluoride/potassium oxalate tubes (4°C). Nafamostat in extracted plasma samples degraded at 4.7 ± 0.7% per h. Conclusion: Viable samples can be obtained using blood collection tubes with sodium fluoride, chilling and processing promptly.
Collapse
Affiliation(s)
| | - Hayoung Won
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, 4029, Australia
| | - Steven C Wallis
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, 4029, Australia
| | - Suzanne L Parker
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, 4029, Australia
| | - Jason A Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, 4029, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, 4029, Australia
- Departments of Pharmacy & Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, 4029, Australia
- Division of Anaesthesiology Critical Care Emergency & Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, 30029, France
| |
Collapse
|
4
|
Jeong HC, Chae YJ, Shin KH. Predicting the systemic exposure and lung concentration of nafamostat using physiologically-based pharmacokinetic modeling. Transl Clin Pharmacol 2022; 30:201-211. [PMID: 36632076 PMCID: PMC9810492 DOI: 10.12793/tcp.2022.30.e20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Nafamostat has been actively studied for its neuroprotective activity and effect on various indications, such as coronavirus disease 2019 (COVID-19). Nafamostat has low water solubility at a specific pH and is rapidly metabolized in the blood. Therefore, it is administered only intravenously, and its distribution is not well known. The main purposes of this study are to predict and evaluate the pharmacokinetic (PK) profiles of nafamostat in a virtual healthy population under various dosing regimens. The most important parameters were assessed using a physiologically based pharmacokinetic (PBPK) approach and global sensitivity analysis with the Sobol sensitivity analysis. A PBPK model was constructed using the SimCYP® simulator. Data regarding the in vitro metabolism and clinical studies were extracted from the literature to assess the predicted results. The model was verified using the arithmetic mean maximum concentration (Cmax), the area under the curve from 0 to the last time point (AUC0-t), and AUC from 0 to infinity (AUC0-∞) ratio (predicted/observed), which were included in the 2-fold range. The simulation results suggested that the 2 dosing regimens for the treatment of COVID-19 used in the case reports could maintain the proposed effective concentration for inhibiting severe acute respiratory syndrome coronavirus 2 entry into the plasma and lung tissue. Global sensitivity analysis indicated that hematocrit, plasma half-life, and microsomal protein levels significantly influenced the systematic exposure prediction of nafamostat. Therefore, the PBPK modeling approach is valuable in predicting the PK profile and designing an appropriate dosage regimen.
Collapse
Affiliation(s)
- Hyeon-Cheol Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| | - Yoon-Jee Chae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Woosuk University, Wanju 55338, Korea
| | - Kwang-Hee Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|