1
|
Ielciu I, Filip GA, Sevastre-Berghian AC, Bâldea I, Olah NK, Burtescu RF, Toma VA, Moldovan R, Oniga I, Hanganu D. Effects of a Rosmarinus officinalis L. Extract and Rosmarinic Acid in Improving Streptozotocin-Induced Aortic Tissue Damages in Rats. Nutrients 2024; 17:158. [PMID: 39796593 PMCID: PMC11723370 DOI: 10.3390/nu17010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/AIM Rosmarinus officinalis L. (R. officinalis) is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats. METHODS The leaves of the species were used to obtain a hydroethanolic extract, which was analyzed using the LC/MS method. Diabetes mellitus was induced by intraperitoneal streptozotocin administration in rats. After two weeks, oxidative stress parameters were evaluated from the heart and aorta homogenates. NOS3, AMPK, and adiponectin levels were quantified using ELISA tests, and thoracic aorta rings were isolated for contractility evaluation in the organ bath. Phospho-NF-κB, NRF2, HIF1 alfa, iNOS, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) quantification were performed using the Western blot technique. RESULTS Carnosic acid, together with rosmarinic acid, were proven to be the main metabolites identified in the composition of the tested extract. Administration of the extract and of RA improved the relaxation response to acetylcholine and the redox status, with the reduction in malondialdehyde (MDA), nitric oxide synthase 3 (NOS 3), AMP-activated protein kinase (AMPK), adiponectin, reduced (GSH) and oxidized glutathione (GSSG) levels, and superoxide dismutase (SOD) activity. RA significantly enhanced the expression of HIF 1α, NRF2, and pNFkB in the heart. CONCLUSIONS Administration of the R. officinalis extract and of RA-alleviated oxidative stress, proving vascular and cardiac antioxidant properties in the hearts and aorta of diabetic rats.
Collapse
Affiliation(s)
- Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Gabriela Adriana Filip
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.C.S.-B.); (I.B.); (R.M.)
| | - Alexandra C. Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.C.S.-B.); (I.B.); (R.M.)
| | - Ioana Bâldea
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.C.S.-B.); (I.B.); (R.M.)
| | - Neli-Kinga Olah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Vasile Goldiş” Western University of Arad, 310414 Arad, Romania;
- PlantExtrakt Ltd., Rădaia, 407059 Cluj-Napoca, Romania;
| | | | - Vlad Alexandru Toma
- Department of Molecular Biology and Biotechnology, Babes-Bolyai University, 400371 Cluj-Napoca, Romania;
| | - Remus Moldovan
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.C.S.-B.); (I.B.); (R.M.)
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (I.O.); (D.H.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (I.O.); (D.H.)
| |
Collapse
|
2
|
Jovanović MS, Milutinović M, Branković S, Mihajilov-Krstev T, Randjelović M, Miladinović B, Ćujić Nikolić N, Šavikin K, Kitić D. Spasmolytic, Antimicrobial, and Antioxidant Activities of Spray-Dried Extracts of Gentiana asclepiadea L. with In Silico Pharmacokinetic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1445. [PMID: 38891254 PMCID: PMC11174654 DOI: 10.3390/plants13111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
This study aimed to evaluate the spasmolytic activity of an underground parts extract of Gentiana asclepiadea L. (Gentianaceae), assess its antioxidant and antimicrobial activities, and explore the impact of extract encapsulation on the aforementioned bioactivities. An extract encapsulated by spray drying with whey protein, pure extract, and pure whey protein were comparatively tested. The main compounds identified via HPLC-DAD analysis underwent in silico ADME assessment. The spasmolytic effect was tested on a model of spontaneous rat ileum contractions, and the mechanism of action was further evaluated on acetylcholine-, KCl-, CaCl2-, BaCl2-, histamine-, N(ω)-nitro-L-arginine methyl ester-, and glibenclamide-modified contractions. The most abundant compounds were secoiridoids (dominantly gentiopicroside), followed by C-glycosylated flavonoids and xanthones. Both pure and encapsulated extracts achieved significant spasmolytic effects, despite the spasmogenic activity of pure whey protein. The extract may exert its spasmolytic effect through multiple pathways, predominantly by antagonizing the Ca2+ channel and opening the K+ channel, while the nitric oxide pathway appears not to be involved. The antimicrobial and antioxidant activities of the pure extract were moderate. The extract stabilized by encapsulation retained all of the tested bioactivities of the unencapsulated extract. The obtained results suggest that G. asclepiadea has potential for use in the treatment of some gastrointestinal complaints and that the encapsulated extract could be a valuable functional ingredient in pharmaceutical and food products.
Collapse
Affiliation(s)
- Miloš S. Jovanović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Đinđića 81, 18000 Niš, Serbia; (M.M.); (M.R.); (B.M.)
| | - Milica Milutinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Đinđića 81, 18000 Niš, Serbia; (M.M.); (M.R.); (B.M.)
| | - Suzana Branković
- Department of Physiology, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Đinđića 81, 18000 Niš, Serbia;
| | - Tatjana Mihajilov-Krstev
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia;
| | - Milica Randjelović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Đinđića 81, 18000 Niš, Serbia; (M.M.); (M.R.); (B.M.)
| | - Bojana Miladinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Đinđića 81, 18000 Niš, Serbia; (M.M.); (M.R.); (B.M.)
| | - Nada Ćujić Nikolić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (N.Ć.N.); (K.Š.)
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (N.Ć.N.); (K.Š.)
| | - Dušanka Kitić
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Đinđića 81, 18000 Niš, Serbia; (M.M.); (M.R.); (B.M.)
| |
Collapse
|
3
|
Malarz J, Michalska K, Stojakowska A. Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review. Molecules 2024; 29:2014. [PMID: 38731504 PMCID: PMC11085778 DOI: 10.3390/molecules29092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.
Collapse
Affiliation(s)
| | | | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.); (K.M.)
| |
Collapse
|
4
|
Özcan FŞ, Dikmen H, Özcan N, Çetin Ö, Çelik M, Trendafilova A. Microwave-assisted extraction optimization of sesquiterpene lactones from Inula helenium roots: A sustainable approach to reduce energy consumption and carbon footprint. Food Sci Nutr 2024; 12:255-267. [PMID: 38268885 PMCID: PMC10804079 DOI: 10.1002/fsn3.3775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 01/26/2024] Open
Abstract
Inula helenium roots are consumed as natural flavor components and raw or cooked as food, and their extracts are rich in sesquiterpene lactones such as alantolactone (AL) and isoalantolactone (IAL), which have recently attracted great attention due to their pharmacological properties. The industrial utilization of these compounds requires the development of green, efficient, cost-effective, and sustainable extraction protocols. Therefore, this study focused on the optimization of microwave-assisted extraction (MAE) process variables using Face-Centered Central Composite Design (FC-CCD). Then, maceration was applied as a conventional technique, and these techniques were compared in terms of extraction efficiency, morphological changes, antimicrobial activities, carbon emissions, and energy consumption. As a result, optimal MAE conditions, i.e., EtOH: water ratio (X 1) = 100:0, liquid/sample ratio (X 2) = 30:1 mL/g, microwave power (X 3) = 300 W, and irradiation time (X 4) = 5 min, were obtained with AL and IAL yields of 54.99 ± 0.11 (mg/g) and 48.40 ± 0.19 (mg/g), respectively. The extract obtained by MAE had similar or better activity than positive controls in most cases and formed the largest inhibition zones against E. coli (29.5 ± 0.71 mm) and A. niger (34.75 ± 1.06 mm). Morphological changes of I. helenium roots after extraction were observed by scanning electron microscopy. Additionally, MAE was 43.4 times faster than maceration, resulting in 228.6 times less energy consumption and carbon emissions. Based on these findings, it is recommended to use MAE as an industrial green technique for the extraction of sesquiterpene lactones with potential applications in nutraceuticals and food products in terms of sustainable economy and environmental protection.
Collapse
Affiliation(s)
| | - Hilal Dikmen
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Nihat Özcan
- TUBITAK Marmara Research CentreLife SciencesKocaeliTurkey
| | - Özlem Çetin
- Department of Biotechnology, Faculty of ScienceSelcuk UniversityKonyaTurkey
| | - Mustafa Çelik
- Advanced Technology Research and Application CenterSelcuk UniversityKonyaTurkey
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of PhytochemistryBulgarian Academy of SciencesSofiaBulgaria
| |
Collapse
|
5
|
Sevastre-Berghian AC, Ielciu I, Bab T, Olah NK, Neculicioiu VS, Toma VA, Sevastre B, Mocan T, Hanganu D, Bodoki AE, Roman I, Lucaciu RL, Hangan AC, Hașaș AD, Decea RM, Băldea I. Betula pendula Leaf Extract Targets the Interplay between Brain Oxidative Stress, Inflammation, and NFkB Pathways in Amyloid Aβ 1-42-Treated Rats. Antioxidants (Basel) 2023; 12:2110. [PMID: 38136229 PMCID: PMC10740548 DOI: 10.3390/antiox12122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is known as the primary and most common cause of dementia in the middle-aged and elderly population worldwide. Chemical analyses of B. pendula leaf extract (BPE), performed using spectrophotometric and chromatographic methods (LC/MS), revealed high amounts of polyphenol carboxylic acids (gallic, chlorogenic, caffeic, trans-p-coumaric, ferulic, and salicylic acids), as well as flavonoids (apigenin, luteolin, luteolin-7-O-glucoside, naringenin, hyperoside, quercetin, and quercitrin). Four groups of Wistar rats were used in this experiment (n = 7/group): control (untreated), Aβ1-42 (2 μg/rat intracerebroventricular (i.c.v.), Aβ1-42 + BPE (200 mg/Kg b.w.), and DMSO (10 μL/rat). On the first day, one dose of Aβ1-42 was intracerebroventricularly administered to animals in groups 2 and 3. Subsequently, BPE was orally administered for the next 15 days to group 3. On the 16th day, behavioral tests were performed. Biomarkers of brain oxidative stress Malondialdehyde (MDA), (Peroxidase (PRx), Catalase (CAT), and Superoxid dismutase (SOD) and inflammation (cytokines: tumor necrosis factor -α (TNF-α), Interleukin 1β (IL-1β), and cyclooxygenase-2 (COX 2)) in plasma and hippocampus homogenates were assessed. Various protein expressions (Phospho-Tau (Ser404) (pTau Ser 404), Phospho-Tau (Ser396) (pTau Ser 396), synaptophysin, and the Nuclear factor kappa B (NFkB) signaling pathway) were analyzed using Western blot and immunohistochemistry in the hippocampus. The results show that BPE diminished lipid peroxidation and neuroinflammation, modulated specific protein expression, enhanced the antioxidant capacity, and improved spontaneous alternation behavior, suggesting that it has beneficial effects in AD.
Collapse
Affiliation(s)
- Alexandra-Cristina Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.-C.S.-B.); (T.M.); (R.M.D.); (I.B.)
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Timea Bab
- PlantExtrakt Ltd., Rădaia, 407059 Cluj-Napoca, Romania; (T.B.); (N.-K.O.)
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Neli-Kinga Olah
- PlantExtrakt Ltd., Rădaia, 407059 Cluj-Napoca, Romania; (T.B.); (N.-K.O.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Vasile Goldiş” Western University of Arad, 310025 Arad, Romania
| | - Vlad Sever Neculicioiu
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Vlad Alexandru Toma
- Department of Molecular Biology and Biotechnology, Babes-Bolyai University, 400371 Cluj-Napoca, Romania
| | - Bogdan Sevastre
- Department of Clinical and Paraclinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.S.); (A.-D.H.)
| | - Teodora Mocan
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.-C.S.-B.); (T.M.); (R.M.D.); (I.B.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Andreea Elena Bodoki
- Department of Inorganic Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.B.); (A.C.H.)
| | - Ioana Roman
- Department of Experimental Biology and Biochemistry, Institute of Biological Research, 400015 Cluj-Napoca, Romania;
| | - Roxana Liana Lucaciu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400000 Cluj-Napoca, Romania;
| | - Adriana Corina Hangan
- Department of Inorganic Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.B.); (A.C.H.)
| | - Alina-Diana Hașaș
- Department of Clinical and Paraclinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.S.); (A.-D.H.)
| | - Roxana Maria Decea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.-C.S.-B.); (T.M.); (R.M.D.); (I.B.)
| | - Ioana Băldea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.-C.S.-B.); (T.M.); (R.M.D.); (I.B.)
| |
Collapse
|
6
|
Moldovan R, Mitrea DR, Florea A, David L, Mureşan LE, Chiş IC, Suciu ŞM, Moldovan BE, Lenghel M, Chiriac LB, Ielciu I, Hanganu D, Bab T, Clichici S. Effects of Gold Nanoparticles Functionalized with Cornus mas L. Fruit Extract on the Aorta Wall in Rats with a High-Fat Diet and Experimental-Induced Diabetes Mellitus-An Imaging Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1101. [PMID: 36985995 PMCID: PMC10051497 DOI: 10.3390/nano13061101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Diabetes mellitus and high-fat diets trigger the mechanisms that alter the walls of blood vessels. Gold nanoparticles, as new pharmaceutical drug delivery systems, may be used in the treatment of different diseases. In our study, the aorta was investigated via imaging after the oral administration of gold nanoparticles functionalized with bioactive compounds derived from Cornus mas fruit extract (AuNPsCM) in rats with a high-fat diet and diabetes mellitus. Sprague Dawley female rats that received a high-fat diet (HFD) for 8 months were injected with streptozotocin to develop diabetes mellitus (DM). The rats were randomly allocated into five groups and were treated, for one additional month with HFD, with carboxymethylcellulose (CMC), insulin, pioglitazone, AuNPsCM solution or with Cornus mas L. extract solution. The aorta imaging investigation consisted of echography, magnetic resonance imaging and transmission electron microscopy (TEM). Compared to the rats that received only CMC, the oral administration of AuNPsCM produced significant increases in aorta volume and significant decreases in blood flow velocity, with ultrastructural disorganization of the aorta wall. The oral administration of AuNPsCM altered the aorta wall with effects on the blood flow.
Collapse
Affiliation(s)
- Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Daniela-Rodica Mitrea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Luminiţa David
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Laura Elena Mureşan
- Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Irina Camelia Chiş
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Şoimița Mihaela Suciu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Bianca Elena Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Manuela Lenghel
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Liviu Bogdan Chiriac
- Medical Biophysics, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400394 Cluj-Napoca, Romania
- Faculty of Physics, Babeş-Bolyai University, 1 Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400010 Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hatieganu, 400000 Cluj-Napoca, Romania
| | - Timea Bab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hatieganu, 400000 Cluj-Napoca, Romania
- SC PlantExtrakt SRL, Radaia, 407059 Cluj, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Phytochemical Profile, Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts. Pharmaceuticals (Basel) 2023; 16:ph16030420. [PMID: 36986519 PMCID: PMC10058959 DOI: 10.3390/ph16030420] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Cornus mas L. is characterized by an increased quantity of bioactive compounds, namely polyphenols, monoterpenes, organic acids, vitamin C and lipophilic compounds such as carotenoids, being anciently used in the treatment of various diseases. This paper’s objectives were to characterize the phytochemical profile of Cornus mas L. fruits and to evaluate the in vitro antioxidant, antimicrobial and cytoprotective effects on renal cells exposed to gentamicin. As such, two ethanolic extracts were obtained. The resulting extracts were used to assess the total polyphenols, flavonoids and carotenoids through spectral and chromatographic methods. The antioxidant capacity was assessed using DPPH and FRAP assays. Due to the high content of phenolic compounds analyzed in fruits and the results obtained regarding antioxidant capacity, we decided to further use the ethanolic extract to investigate the in vitro antimicrobial and cytoprotective effects on renal cells stressed with gentamicin. The antimicrobial activity was assessed using agar well diffusion and broth microdilution methods, with great results regarding Pseudomonas aeruginosa. The cytotoxic activity was assessed using MTT and Annexin-V assays. According to the findings, extract-treated cells had a higher cell viability. However, at high concentrations, viability was shown to decline, most likely due to the extract and gentamicin’s additive effects.
Collapse
|
8
|
Pall E, Roman A, Olah D, Beteg FI, Cenariu M, Spînu M. Enhanced Bioactive Potential of Functionalized Injectable Platelet-Rich Plasma. Molecules 2023; 28:molecules28041943. [PMID: 36838930 PMCID: PMC9967773 DOI: 10.3390/molecules28041943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Injectable platelet-rich fibrin (iPRF) is a frequently used platelet concentrate used for various medical purposes both in veterinary and human medicine due to the regenerative potential of hard and soft tissues, and also because of its antimicrobial effectiveness. This in vitro study was carried out to assess the cumulative antimicrobial and antibiofilm effect of iPRF functionalized with a multifunctional glycoprotein, human lactoferrin (Lf). Thus, the ability to potentiate cell proliferation was tested on keratinocytes and evaluated by the CCK8 test. The combinations of iPRF and Lf induced an increase in the proliferation rate after 24 h. The average cell viability of treated cultures (all nine variants) was 102.87% ± 1.00, and the growth tendency was maintained even at 48 h. The highest proliferation rate was observed in cultures treated with 7% iPRF in combination with 50 µg/mL of Lf, with an average viability of 102.40% ± 0.80. The antibacterial and antibiofilm activity of iPRF, of human lactoferrin and their combination were tested by agar-well diffusion (Kirby-Bauer assay), broth microdilution, and crystal violet assay against five reference bacterial strains. iPRF showed antimicrobial and antibiofilm potential, but with variations depending on the tested bacterial strain. The global analysis of the results indicates an increased antimicrobial potential at the highest concentration of Lf mixed with iPRF. The study findings confirmed the hypothesized enhanced bioactive properties of functionalized iPRF against both Gram-positive and Gram-negative biofilm-producing bacteria. These findings could be further applied, but additional studies are needed to evaluate the mechanisms that are involved in these specific bioactive properties.
Collapse
Affiliation(s)
- Emoke Pall
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
- Correspondence: (E.P.); (M.C.)
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Diana Olah
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| | - Florin Ioan Beteg
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
- Correspondence: (E.P.); (M.C.)
| | - Marina Spînu
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Simea Ș, Ielciu I, Hanganu D, Niculae M, Pall E, Burtescu RF, Olah NK, Cenariu M, Oniga I, Benedec D, Duda M. Evaluation of the Cytotoxic, Antioxidative and Antimicrobial Effects of Dracocephalum moldavica L. Cultivars. Molecules 2023; 28:molecules28041604. [PMID: 36838592 PMCID: PMC9965778 DOI: 10.3390/molecules28041604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The aim of the present study was to correlate the antioxidant, antimicrobial, and cytotoxic activities of hydroalcoholic extracts obtained from the aerial parts of three Dracocephalum moldavica L. cultivars with their polyphenolic compositions. The polyphenols were identified and quantified using spectrophotometrical methods and LC-MS analysis. Their antioxidant capacities were assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. Their in vitro antimicrobial efficacies were assessed using the agar well diffusion and broth microdilution methods. Their cytotoxicity was investigated on normal diploid foreskin fibroblasts (BJ) and on colorectal adenocarcinoma (DLD-1) cell lines. The results pointed out significant amounts of polyphenolic compounds in the compositions of the tested cultivars, with rosmarinic acid as the main compound (amounts ranging between 5.337 ± 0.0411 and 6.320 ± 0.0535 mg/mL). All three cultivars displayed significant antioxidant (IC50 ranging between 35.542 ± 0.043 and 40.901 ± 0.161 µg/mL for the DPPH assay, and for the FRAP assay 293.194 ± 0.213 and 330.165 ± 0.754 µmol Trolox equivalent/mg dry vegetal material) and antimicrobial potential (especially towards the Gram-positive bacteria), as well as a selective toxicity towards the tumoral line. A significant positive correlation was found between antioxidant activity and the total phenolic acids (r2 = 0.987) and polyphenols (r2 = 0.951). These findings bring further arguments for strongly considering D. moldavica cultivars as promising vegetal products, which warrants further investigation.
Collapse
Affiliation(s)
- Ștefania Simea
- Department of Crop Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
- Correspondence: (I.I.); (D.H.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania
- Correspondence: (I.I.); (D.H.)
| | - Mihaela Niculae
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | - Emoke Pall
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | | | - Neli-Kinga Olah
- SC PlantExtrakt SRL, 407059 Rădaia, Cluj-Napoca, Romania
- Department of Therapeutical Chemistry, Pharmaceutical Industry and Biotechnologies, Faculty of Pharmacy, “Vasile Goldiș” Western University from Arad, 310048 Arad, Romania
| | - Mihai Cenariu
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania
| | - Marcel Duda
- Department of Crop Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
10
|
The antioxidant potential, phenolic compounds, cytotoxic activity and mineral element analysis of Gentiana septemfida Pallas and its antiproliferative effect on HT-29 cell line. Eur J Integr Med 2023. [DOI: 10.1016/j.eujim.2023.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
11
|
Safta DA, Ielciu I, Șuștic R, Hanganu D, Niculae M, Cenariu M, Pall E, Moldovan ML, Achim M, Bogdan C, Tomuță I. Chemical Profile and Biological Effects of an Herbal Mixture for the Development of an Oil-in-Water Cream. PLANTS (BASEL, SWITZERLAND) 2023; 12:248. [PMID: 36678961 PMCID: PMC9861053 DOI: 10.3390/plants12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Three individual hydroalcoholic extracts derived from Hamamelis virginiana leaves, Krameria lappacea root, Salix alba bark, and the resulting herbal mixture (HM) were assessed for the phytochemical profile as well as for antibacterial and cytotoxic potential. The chemical composition of the individual extracts and of their mixture was analyzed by chromatographical (LC-MS) and spectrophotometrical methods. The antimicrobial properties were evaluated by using the agar-well diffusion and the broth microdilution assays, whereas the potential cytotoxicity was investigated on human keratinocyte cell line by MTT method and apoptosis test. The HM composition revealed important amounts of valuable polyphenolic compounds provided from the individual extracts, having synergistic biological effects. All tested extracts displayed in vitro antimicrobial properties, with a significantly higher efficacy noticed for the HM when tested against Staphylococcus aureus. Moreover, none of the tested extracts was responsible for in vitro cytotoxicity against the human keratinocytes in the selected concentration range. Furthermore, the HM was included in an oil-in-water cream for the nonpharmacological treatment of seborrheic dermatitis, developed and optimized by using a QbD approach. A D-optimal experimental plan with four factors that varied on two levels was used to investigate the effect of the quantitative variation of the formulation factors (emulsifier, co-emulsifier, thickening agent, oily phase ratio) on the characteristics of the cream in terms of firmness, consistency, adhesiveness, stringiness, spreadability, and viscosity. Based on the experimental results, an optimal formulation containing 2.5% emulsifier and 20% oily phase was prepared and analyzed. The obtained results showed appropriate quality characteristics of this novel cream, which may be used in the future to manage the associated symptoms of seborrheic dermatitis.
Collapse
Affiliation(s)
- Diana Antonia Safta
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Raffaela Șuștic
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Mihaela Niculae
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | - Emoke Pall
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | - Mirela Liliana Moldovan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Marcela Achim
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| |
Collapse
|