1
|
Gong X, Yang Y, Xu T, Yao D, Lin S, Chang W. Assessing the Anxiolytic and Relaxation Effects of Cinnamomum camphora Essential Oil in University Students: A Comparative Study of EEG, Physiological Measures, and Psychological Responses. Front Psychol 2024; 15:1423870. [PMID: 39131857 PMCID: PMC11312375 DOI: 10.3389/fpsyg.2024.1423870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Background Cinnamomum camphora is a commercially important tree species in China, and it's also a common native tree in the forests of southern China. However, literature on the impact of Cinnamomum camphora essential oil (CCEO) on human psychophysiological activity is scarce. Hence, the primary objective of this study was to examine the effect of exposure to CCEO on the functioning of the human autonomic nervous system, electroencephalographic (EEG) activity, and emotional state. Methods Forty-three healthy university students participated. The data collected included heart rate (HR), blood pressure (BP), pulse rate, blood oxygen saturation (SpO2), electroencephalographic (EEG) activity, and the results of the Profile of Mood States (POMS) test. Results A drop in diastolic pressure (DBP) and pulse rate was also noticed after participants inhaled CCEO. Furthermore, EEG studies have demonstrated notable reductions in absolute beta (AB), absolute gamma (AG), absolute high beta (AHB), and relative gamma (RG) power spectra during exposure to CCEO. Conversely, the relative theta (RT) and power spectra values showed a significant increase. Additionally, the finding from POMS indicated that the fragrance evoked positive emotions and suppressed negative feelings. Conclusion The results suggest that exposure to CCEO may promote mental and physical relaxation, facilitate cognitive processes such as memory and attention, and enhance mood states.
Collapse
Affiliation(s)
- Xiangfei Gong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yujun Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tong Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongsheng Yao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengyu Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiyin Chang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Laboratory of Virtual Teaching and Research on Forest Therapy Specialty of Taiwan Strait, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
He X, Qin S, Yu G, Zhang S, Yi F. Study on the Effect of Dalbergia pinnata (Lour.) Prain Essential Oil on Electroencephalography upon Stimulation with Different Auditory Effects. Molecules 2024; 29:1584. [PMID: 38611863 PMCID: PMC11013205 DOI: 10.3390/molecules29071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Dalbergia pinnata (Lour.) Prain (D. pinnata) is a valuable medicinal plant, and its volatile parts have a pleasant aroma. In recent years, there have been a large number of studies investigating the effect of aroma on human performance. However, the effect of the aroma of D. pinnata on human psychophysiological activity has not been reported. Few reports have been made about the effects of aroma and sound on human electroencephalographic (EEG) activity. This study aimed to investigate the effects of D. pinnata essential oil in EEG activity response to various auditory stimuli. In the EEG study, 30 healthy volunteers (15 men and 15 women) participated. The electroencephalogram changes of participants during the essential oil (EO) of D. pinnata inhalation under white noise, pink noise and traffic noise stimulations were recorded. EEG data from 30 electrodes placed on the scalp were analyzed according to the international 10-20 system. The EO of D. pinnata had various effects on the brain when subjected to different auditory stimuli. In EEG studies, delta waves increased by 20% in noiseless and white noise environments, a change that may aid sleep and relaxation. In the presence of pink noise and traffic noise, alpha and delta wave activity (frontal pole and frontal lobe) increased markedly when inhaling the EO of D. pinnata, a change that may help reduce anxiety. When inhaling the EO of D. pinnata with different auditory stimuli, women are more likely to relax and get sleepy compared to men.
Collapse
Affiliation(s)
| | | | | | | | - Fengping Yi
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (X.H.); (S.Q.); (G.Y.); (S.Z.)
| |
Collapse
|
3
|
Zhao Q, Ye Z, Deng Y, Chen J, Chen J, Liu D, Ye X, Huan C. An advance in novel intelligent sensory technologies: From an implicit-tracking perspective of food perception. Compr Rev Food Sci Food Saf 2024; 23:e13327. [PMID: 38517017 DOI: 10.1111/1541-4337.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
Food sensory evaluation mainly includes explicit and implicit measurement methods. Implicit measures of consumer perception are gaining significant attention in food sensory and consumer science as they provide effective, subconscious, objective analysis. A wide range of advanced technologies are now available for analyzing physiological and psychological responses, including facial analysis technology, neuroimaging technology, autonomic nervous system technology, and behavioral pattern measurement. However, researchers in the food field often lack systematic knowledge of these multidisciplinary technologies and struggle with interpreting their results. In order to bridge this gap, this review systematically describes the principles and highlights the applications in food sensory and consumer science of facial analysis technologies such as eye tracking, facial electromyography, and automatic facial expression analysis, as well as neuroimaging technologies like electroencephalography, magnetoencephalography, functional magnetic resonance imaging, and functional near-infrared spectroscopy. Furthermore, we critically compare and discuss these advanced implicit techniques in the context of food sensory research and then accordingly propose prospects. Ultimately, we conclude that implicit measures should be complemented by traditional explicit measures to capture responses beyond preference. Facial analysis technologies offer a more objective reflection of sensory perception and attitudes toward food, whereas neuroimaging techniques provide valuable insight into the implicit physiological responses during food consumption. To enhance the interpretability and generalizability of implicit measurement results, further sensory studies are needed. Looking ahead, the combination of different methodological techniques in real-life situations holds promise for consumer sensory science in the field of food research.
Collapse
Affiliation(s)
- Qian Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Zhiyue Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Jin Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Cheng Huan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| |
Collapse
|
4
|
Hudz N, Kobylinska L, Pokajewicz K, Horčinová Sedláčková V, Fedin R, Voloshyn M, Myskiv I, Brindza J, Wieczorek PP, Lipok J. Mentha piperita: Essential Oil and Extracts, Their Biological Activities, and Perspectives on the Development of New Medicinal and Cosmetic Products. Molecules 2023; 28:7444. [PMID: 37959863 PMCID: PMC10649426 DOI: 10.3390/molecules28217444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
This review aims to analyze Mentha piperita L. as a potential raw material for the development of new health-promoting products (nutraceuticals, cosmetics, and pharmaceutical products). A lot of scientific publications were retrieved from the Scopus, PubMed, and Google Scholar databases which enable the study and generalization of the extraction procedures, key biologically active compounds of essential oil and extracts, biological properties, and therapeutic potential of M. piperita, along with perspectives on the development of its dosage forms, including combinations of synthetic active substances and herbal preparations of M. piperita. The results of this review indicate that M. piperita is a source rich in phytoconstituents of different chemical nature and can be regarded as a source of active substances to enhance health and to develop medicinal products for complementary therapy of various conditions, especially those related with oxidant stress, inflammation, and moderate infections. Essential oil has a broad spectrum of activities. Depending on the test and concentration, this essential oil has both anti- and prooxidant properties. Gram-positive bacteria are more sensitive to the essential oil of M. piperita than Gram-negative ones. This review also considered some facets of the standardization of essential oil and extracts of M. piperita. Among the identified phenolics of extracts were caffeic acid, rosmarinic acid, eriocitrin, luteolin derivates (luteolin-7-O-rutinoside, luteolin-7-O-glucoronide), and hesperidin. The concentration of these phenolics depends on the solvent used. This review also considered the relationships between the chemical component and biological activity. The results showed that the essential oil and extracts reduced inflammation in vitro by inhibiting the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and in vivo by reducing the paw edema induced using carrageenan injection in rats. Therefore, herbal preparations of M. piperita are promising medicinal and cosmetic preparations for their usage in skincare and oral cavity care products with antimicrobial, anti-inflammatory, and wound-healing properties. This plant can also be regarded as a platform for the development of antibacterial preparations and combined anti-inflammatory and cardioprotective medicinal products (synthetic active substances plus herbal preparations). This review could be considered for the justification of the composition of some medicinal products during their pharmaceutical development for writing a registration dossier in the format of Common Technical Document.
Collapse
Affiliation(s)
- Nataliia Hudz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Lesya Kobylinska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Katarzyna Pokajewicz
- Department of Analytical Chemistry, University of Opole, 45-052 Opole, Poland; (K.P.); (P.P.W.)
| | - Vladimira Horčinová Sedláčková
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia; (V.H.S.); (J.B.)
| | - Roman Fedin
- Department of Pharmacy and Biology, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, 79010 Lviv, Ukraine;
| | - Mariia Voloshyn
- Department of Foreign Languages, Lviv Polytechnic National University, 79000 Lviv, Ukraine; (M.V.); (I.M.)
| | - Iryna Myskiv
- Department of Foreign Languages, Lviv Polytechnic National University, 79000 Lviv, Ukraine; (M.V.); (I.M.)
| | - Ján Brindza
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia; (V.H.S.); (J.B.)
| | - Piotr Paweł Wieczorek
- Department of Analytical Chemistry, University of Opole, 45-052 Opole, Poland; (K.P.); (P.P.W.)
| | - Jacek Lipok
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| |
Collapse
|
5
|
Enhancing the Antimicrobial Effect of Ozone with Mentha piperita Essential Oil. Molecules 2023; 28:molecules28052032. [PMID: 36903277 PMCID: PMC10004731 DOI: 10.3390/molecules28052032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
This study aimed to obtain and analyse Mentha piperita essential oil (MpEO) for the prospect of being used as an enhancement agent for the antimicrobial potential of ozone against gram-positive and gram-negative bacteria and fungi. The research was done for different exposure times, and it gained time-dose relationships and time-effect correlations. Mentha piperita (Mp) essential oil (MpEO) was obtained via hydrodistillation and further analysed by using GC-MS. The broth microdilution assay was used to determine the strain inhibition/strain mass growth by using spectrophotometric optical density reading (OD). The bacterial/mycelium growth rates (BGR/MGR) and the bacterial/mycelium inhibition rates (BIR/MIR) after ozone treatment in the presence and absence of MpEO on the ATTC strains were calculated; the minimum inhibition concentration (MIC) and statistical interpretations of the time-dose relationship and specific t-test correlations were determined. The effect of ozone on the following tested strains at maximum efficiency was observed after 55 s of single ozone exposure, in order of effect strength: S. aureus > P. aeruginosa > E. coli > C. albicans > S. mutans. For ozone with the addition of 2% MpEO (MIC), maximum efficacy was recorded at 5 s for these strains, in order of effect strength: C. albicans > E. coli > P. aeruginosa > S. aureus > S. mutans. The results suggest a new development and affinity regarding the cell membrane of the different microorganisms tested. In conclusion, the use of ozone, combined with MpEO, is sustained as an alternative therapy in plaque biofilm and suggested as helpful in controlling oral disease-causing microorganisms in medicine.
Collapse
|