1
|
Ellouz M, Ihammi A, Baraich A, Farihi A, Addichi D, Loughmari S, Sebbar NK, Bouhrim M, A. Mothana R, M. Noman O, Eto B, Chigr F, Chigr M. Synthesis and In Silico Analysis of New Polyheterocyclic Molecules Derived from [1,4]-Benzoxazin-3-one and Their Inhibitory Effect against Pancreatic α-Amylase and Intestinal α-Glucosidase. Molecules 2024; 29:3086. [PMID: 38999038 PMCID: PMC11243342 DOI: 10.3390/molecules29133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study focuses on synthesizing a new series of isoxazolinyl-1,2,3-triazolyl-[1,4]-benzoxazin-3-one derivatives 5a-5o. The synthesis method involves a double 1,3-dipolar cycloaddition reaction following a "click chemistry" approach, starting from the respective [1,4]-benzoxazin-3-ones. Additionally, the study aims to evaluate the antidiabetic potential of these newly synthesized compounds through in silico methods. This synthesis approach allows for the combination of three heterocyclic components: [1,4]-benzoxazin-3-one, 1,2,3-triazole, and isoxazoline, known for their diverse biological activities. The synthesis procedure involved a two-step process. Firstly, a 1,3-dipolar cycloaddition reaction was performed involving the propargylic moiety linked to the [1,4]-benzoxazin-3-one and the allylic azide. Secondly, a second cycloaddition reaction was conducted using the product from the first step, containing the allylic part and an oxime. The synthesized compounds were thoroughly characterized using spectroscopic methods, including 1H NMR, 13C NMR, DEPT-135, and IR. This molecular docking method revealed a promising antidiabetic potential of the synthesized compounds, particularly against two key diabetes-related enzymes: pancreatic α-amylase, with the two synthetic molecules 5a and 5o showing the highest affinity values of 9.2 and 9.1 kcal/mol, respectively, and intestinal α-glucosidase, with the two synthetic molecules 5n and 5e showing the highest affinity values of -9.9 and -9.6 kcal/mol, respectively. Indeed, the synthesized compounds have shown significant potential as antidiabetic agents, as indicated by molecular docking studies against the enzymes α-amylase and α-glucosidase. Additionally, ADME analyses have revealed that all the synthetic compounds examined in our study demonstrate high intestinal absorption, meet Lipinski's criteria, and fall within the required range for oral bioavailability, indicating their potential suitability for oral drug development.
Collapse
Affiliation(s)
- Mohamed Ellouz
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Aziz Ihammi
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, P.O. Box 717, Oujda 60000, Morocco;
| | - Ayoub Farihi
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra 14000, Morocco;
- Oriental Center for Water and Environmental Sciences and Technologies (COSTE), Mohammed Premier University, Oujda 60000, Morocco
| | - Darifa Addichi
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Saliha Loughmari
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Nada Kheira Sebbar
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.)
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, P.O. Box 83, F-59000 Lille, France;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.A.M.); (O.M.N.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.A.M.); (O.M.N.)
| | - Bruno Eto
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, P.O. Box 83, F-59000 Lille, France;
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.)
| | - Mohammed Chigr
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| |
Collapse
|
2
|
Tiwari G, Mishra VK, Khanna A, Tyagi R, Sagar R. Synthesis of Chirally Enriched Pyrazolylpyrimidinone-Based Glycohybrids via Annulation of Glycals with 2-Hydrazineylpyrimidin-4(3 H)-ones. J Org Chem 2024; 89:5000-5009. [PMID: 38471017 DOI: 10.1021/acs.joc.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
A new strategy for synthesizing chirally enriched pyrazolylpyrimidinone-based glycohybrids has been achieved, employing an annulation approach in ethanol without any additives or catalysts under microwave conditions. The designed compounds were obtained within a short reaction time (5 min). This method offers several advantages, including mild reaction conditions, a green solvent, and a metal-free approach. Furthermore, the protocol demonstrated a broad substrate scope, successfully incorporating various functional groups with stereochemical diversity and furnishing chirally enriched molecules.
Collapse
Affiliation(s)
- Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Krasnov VP, Andronova VL, Belyavsky AV, Borisevich SS, Galegov GA, Kandarakov OF, Gruzdev DA, Vozdvizhenskaya OA, Levit GL. Large Subunit of the Human Herpes Simplex Virus Terminase as a Promising Target in Design of Anti-Herpesvirus Agents. Molecules 2023; 28:7375. [PMID: 37959793 PMCID: PMC10649544 DOI: 10.3390/molecules28217375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is an extremely widespread pathogen characterized by recurrent infections. HSV-1 most commonly causes painful blisters or sores around the mouth or on the genitals, but it can also cause keratitis or, rarely, encephalitis. First-line and second-line antiviral drugs used to treat HSV infections, acyclovir and related compounds, as well as foscarnet and cidofovir, selectively inhibit herpesvirus DNA polymerase (DNA-pol). It has been previously found that (S)-4-[6-(purin-6-yl)aminohexanoyl]-7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine (compound 1) exhibits selective anti-herpesvirus activity against HSV-1 in cell culture, including acyclovir-resistant mutants, so we consider it as a lead compound. In this work, the selection of HSV-1 clones resistant to the lead compound was carried out. High-throughput sequencing of resistant clones and reference HSV-1/L2 parent strain was performed to identify the genetic determinants of the virus's resistance to the lead compound. We identified a candidate mutation presumably associated with resistance to the virus, namely the T321I mutation in the UL15 gene encoding the large terminase subunit. Molecular modeling was used to evaluate the affinity and dynamics of the lead compound binding to the putative terminase binding site. The results obtained suggest that the lead compound, by binding to pUL15, affects the terminase complex. pUL15, which is directly involved in the processing and packaging of viral DNA, is one of the crucial components of the HSV terminase complex. The loss of its functional activity leads to disruption of the formation of mature virions, so it represents a promising drug target. The discovery of anti-herpesvirus agents that affect biotargets other than DNA polymerase will expand our possibilities of targeting HSV infections, including those resistant to baseline drugs.
Collapse
Affiliation(s)
- Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Valeriya L. Andronova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.L.A.); (G.A.G.)
| | - Alexander V. Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.V.B.); (O.F.K.)
| | | | - George A. Galegov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.L.A.); (G.A.G.)
| | - Oleg F. Kandarakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.V.B.); (O.F.K.)
| | - Dmitry A. Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Olga A. Vozdvizhenskaya
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| |
Collapse
|
4
|
Krasnov VP, Vozdvizhenskaya OA, Baryshnikova MA, Pershina AG, Musiyak VV, Matveeva TV, Nevskaya KV, Brikunova OY, Gruzdev DA, Levit GL. Synthesis and Cytotoxic Activity of the Derivatives of N-(Purin-6-yl)aminopolymethylene Carboxylic Acids and Related Compounds. Molecules 2023; 28:molecules28041853. [PMID: 36838839 PMCID: PMC9962735 DOI: 10.3390/molecules28041853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Testing a number of N-[omega-(purin-6-yl)aminoalkanoyl] derivatives of 7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine in a panel of nine tumor cell lines has shown that the studied compounds exhibit high cytotoxic activity, especially against 4T1 murine mammary carcinoma, COLO201 human colorectal adenocarcinoma, SNU-1 human gastric carcinoma, and HepG2 human hepatocellular carcinoma cells. Synthesis and study of structural analogs of these compounds made it possible to find that the presence of both a difluorobenzoxazine fragment and a purine residue bound via a linker of a certain length is crucial for the manifestation of the cytotoxic activity of this group of compounds. The study of the effect of the most promising compound on the cell cycle of the human tumor cell lines, the most sensitive and least sensitive to cytotoxic action (MDA-MB-231 breast adenocarcinoma and COLO201 colorectal adenocarcinoma, respectively), allows us to conclude that this compound is an inhibitor of DNA biosynthesis. The found group of purine conjugates may be of interest in the design of new antitumor agents.
Collapse
Affiliation(s)
- Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
- Correspondence:
| | - Olga A. Vozdvizhenskaya
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Maria A. Baryshnikova
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia
| | - Alexandra G. Pershina
- Center of Bioscience and Bioengineering, Siberian State Medical University, 634050 Tomsk, Russia
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vera V. Musiyak
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Tatyana V. Matveeva
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Kseniya V. Nevskaya
- Center of Bioscience and Bioengineering, Siberian State Medical University, 634050 Tomsk, Russia
| | - Olga Y. Brikunova
- Center of Bioscience and Bioengineering, Siberian State Medical University, 634050 Tomsk, Russia
| | - Dmitry A. Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| |
Collapse
|