1
|
Wang Q, Qin D, Ni E, Fang K, Wang Q, Li H, Huang JA, Liu Z, Wu H. Widely targeted metabolomics analysis flavonoid metabolites in different purple teas. Food Chem 2025; 474:142933. [PMID: 39904087 DOI: 10.1016/j.foodchem.2025.142933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Purple teas are gaining popularity due to their significant health benefits. This study analyzed flavonoid metabolites in the second leaves of three purple tea varieties with stable purple shoots-'Hongfei' (HF), 'Danfei' (DF), and 'Ziya 24' (ZY24)-using UPLC-MS/MS, with 'Yinghong 9' (YH9), a green tea, as the control. The most abundant anthocyanins were cyanidin-3-O-glucoside, cyanidin-O-syringic acid, and pelargonidin-3-O-glucoside in HF, while ZY24 and DF accumulated additional delphinidin and petunidin derivatives. DF also contained malvidin-3-O-galactoside. Furthermore, 22 significantly enriched non-anthocyanin flavonoids were identified as potential co-pigments contributing to the vibrant leaf coloration. These findings reveal key anthocyanin and flavonoid profiles responsible for the distinct purple hues in the tender shoots of different purple tea varieties.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Dandan Qin
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Erdong Ni
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Kaixing Fang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Qiushuang Wang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Hongjian Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China.
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| |
Collapse
|
2
|
Randeni N, Luo J, Xu B. Critical Review on Anti-Obesity Effects of Anthocyanins Through PI3K/Akt Signaling Pathways. Nutrients 2025; 17:1126. [PMID: 40218884 PMCID: PMC11990295 DOI: 10.3390/nu17071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Obesity is a global health crisis and is one of the major reasons for the rising prevalence of metabolic disorders such as type 2 diabetes, cardiovascular diseases, and certain cancers. There has been growing interest in the search for natural molecules with potential anti-obesity effects; among the phytochemicals of interest are anthocyanins, which are flavonoid pigments present in many fruits and vegetables. Anthocyanins influence obesity via several signaling pathways. The PI3K/Akt signaling pathway plays a major role with a focus on downstream targets such as GLUT4, FOXO, GSK3β, and mTOR, which play a central role in the regulation of glucose metabolism, lipid storage, and adipogenesis. The influence of critical factors such as oxidative stress and inflammation also affect the pathophysiology of obesity. However, the studies reviewed have certain limitations, including variations in experimental models, bioavailability challenges, and a lack of extensive clinical validation. While anthocyanin shows tremendous potential, challenges such as poor bioavailability, stability, and regulatory matters must be overcome for successful functional food inclusion of anthocyanins. The future of anthocyanin-derived functional foods lies in their ability to overcome hurdles. Therefore, this review highlights the molecular mechanisms of obesity through the PI3K/Akt signaling pathways and explores how anthocyanins can modulate these signaling pathways to address obesity and related metabolic disorders. It also addresses some ways to solve the challenges, like bioavailability and stability, while emphasizing future possibilities for anthocyanin-based functional foods in obesity management.
Collapse
Affiliation(s)
| | | | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China; (N.R.); (J.L.)
| |
Collapse
|
3
|
López-Molina MF, Rodríguez-Pulido FJ, Mora-Garrido AB, González-Miret ML, Heredia FJ. New approaches for screening grape seed peptides as colourimetric modulators by malvidin-3-O-glucoside stabilisation. Food Chem 2025; 464:141708. [PMID: 39461310 DOI: 10.1016/j.foodchem.2024.141708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
The colour of red wine is due to the presence of anthocyanins and their derived pigments, with malvidin-3-O-glucoside being the most predominant. Due to their chemical conformation, anthocyanins are susceptible to several conditions and have limited stability. Through copigmentation processes, anthocyanins can interact non-covalently with other molecules to enhance their stability. As a natural source of proteins and peptides, grape seeds are of particular interest because they may be of significant techno-functional value in the modulation of wine quality characteristics, such as acting as copigments to enhance colour stability. The proposed methodology allowed predicting in-depth insights into the molecular-level nature of interaction between the identified peptides when complexed with malvidin 3-O-glucoside and their colour stabilising properties. Thereby, allowing a prior screening in silico to facilitate their future application in experimental assays, such as obtaining the tested peptides with the characteristics already studied by means of grape seed meal directed hydrolysis.
Collapse
Affiliation(s)
- María Fernanda López-Molina
- Food Colour & Quality Laboratory, Dept. Nutrition & Food Science. Facultad de Farmacia. Universidad de Sevilla, 41012-Sevilla, Spain
| | - Francisco J Rodríguez-Pulido
- Food Colour & Quality Laboratory, Dept. Nutrition & Food Science. Facultad de Farmacia. Universidad de Sevilla, 41012-Sevilla, Spain.
| | - Ana Belén Mora-Garrido
- Food Colour & Quality Laboratory, Dept. Nutrition & Food Science. Facultad de Farmacia. Universidad de Sevilla, 41012-Sevilla, Spain
| | - M Lourdes González-Miret
- Food Colour & Quality Laboratory, Dept. Nutrition & Food Science. Facultad de Farmacia. Universidad de Sevilla, 41012-Sevilla, Spain
| | - Francisco J Heredia
- Food Colour & Quality Laboratory, Dept. Nutrition & Food Science. Facultad de Farmacia. Universidad de Sevilla, 41012-Sevilla, Spain
| |
Collapse
|
4
|
Shah SA, Gul A, Shah GM, Wizrah MSI, Khalid A, Munir M, Maqbool Z, Aftab A, Alrahili MR, Siddiqua A, Begum MY. Phytochemical analysis and biological activities of solvent extracts and silver nanoparticles obtained from Woodwardia unigemmata (Makino) Nakai. PLoS One 2025; 20:e0312567. [PMID: 39813178 PMCID: PMC11734996 DOI: 10.1371/journal.pone.0312567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/03/2024] [Indexed: 01/18/2025] Open
Abstract
Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata. Extracts in different organic and inorganic solvents were prepared, silver nanoparticles were prepared using the green synthesis method. Phytochemicals and antioxidant activity was determined spectrophotometry, anticancer potential was determined against gastric cancer and normal gastric epithelial cells using CCK8 and colony formation assays W. unigemmata was found to have a significant enrichment of various phytochemicals including flavonoids, terpenoids, alkaloids, carotenoids, tannins, saponins, quinines, carbohydrates, phenols, coumarins and phlobatanins. Among them phenolics (5289.89 ± 112.67) had high enrichment followed by reducing sugar (851.53 ± 120.15), flavonoids (408.28 ± 20.26) and ascorbic acid (347.64 ± 16.32), respectively. The extracts prepared in organic solvents showed strong antibacterial activity against P. aeruginosa (chloroform, 13.66±0.88, ethyl acetate, 8.66±4.33, methyl alcohol, 13.33±1.66, N-hexane, 12.33±0.88) and S. aureus (chloroform, 15±0.57, ethyl acetate, 16.33±0.33, methyl alcohol, 17.66±0.33 and N-hexane, 16.33±0.33). Aqueously prepared AgNPs showed remarkable activity against P. aeruginosa follwed by E. coli, 17.66 ± 1.85, S. aureus, 16.00 ± 1.73, K. pneumoniae, 14.33 ± 1.20, respectively. The ethanolic extracts (500 μg, 1000 μg, 2000 μg) of the W. unigemmata were found to have cytotoxicity against both gastric cancer (AGS and SGC7901) and normal cell lines (GES-1); a significant cellular proliferation arrest was observed. These results suggest that W. Unigemmata contains numerous bioactive phytochemicals and can be useful as a drug against MDR bacterial strains. These biomolecules covering AgNPs may enhance their biological activities, which can be employed in the treatment of various microbial infections.
Collapse
Affiliation(s)
- Syed Ahsan Shah
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Alia Gul
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Maha Saeed Ibrahim Wizrah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Awais Khalid
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mamoona Munir
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Zainab Maqbool
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Arusa Aftab
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Mazen R. Alrahili
- Physics Department, School of Science, Taibah University, Medinah, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
5
|
Kiadehi FB, Samani P, Barazandeh S, Pam P, Hajipour A, Goli N, Asadi A. The Effect of Anthocyanin Supplementation on Pro-Inflammatory Biomarkers in Patients With Metabolic Disorders: A Grade-Assessed Systematic Review and Meta-Analysis. CURRENT THERAPEUTIC RESEARCH 2024; 102:100772. [PMID: 40034375 PMCID: PMC11874868 DOI: 10.1016/j.curtheres.2024.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/15/2024] [Indexed: 03/05/2025]
Abstract
Introduction and Aim Patients with metabolic disorders benefit from using anthocyanins. Nevertheless, the findings drawn from extant trials remain contentious. Thus, this meta-analysis evaluated anthocyanin's effect on inflammatory biomarkers in patients with metabolic disorders. Materials and Methods We comprehensively searched electronic databases, including PubMed, Scopus, Web of Science, and CENTRAL, from their inception to June 14, 2024. Findings A total of 11 randomized controlled clinical trials with 14 arms were analyzed. There was no significant effect of anthocyanin supplementation on interleukin (IL)-1β levels (standardized mean difference [SMD] = -0.01, 95% CI: -0.33, 0.31; P = 0.941, I 2 = 62.4%, P = 0.031), tumor necrosis factor-α (TNF-α) (SMD = -0.49, 95% CI: -1.07, 0.09; P = 0.098, I 2 = 94.0%, P < 0.001) and IL-6 (SMD = -0.69, 95% CI: -1.45, 0.06; P = 0.073, I 2 = 95.2%, P < 0.001), respectively. A significant between-study heterogeneity was identified, which was reduced when subgrouping by sample size, dosage, and study population. However, subgroup analysis showed that it might decrease TNF-α and IL-6 in patients with hypertension, and if the intervention lasted less than 12 weeks. Conclusions There was no significant impact of anthocyanin supplementation on IL-1β, TNF-α, and IL-6; however, it should be noted that the intervention has a decreasing impact on individuals with hypertension. Our observed effect sizes on IL-1β, TNF-α, and IL-6 are not clinically important.
Collapse
Affiliation(s)
- Fatemeh Babaee Kiadehi
- Department of Clinical Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Samani
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Sanaz Barazandeh
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Pedram Pam
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Hajipour
- Department of Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Goli
- School of Bioscience, University of Skövde, Skövde, Sweden
| | - Ali Asadi
- Department of Clinical Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Senevirathna N, Hassanpour M, O’Hara I, Karim A. Extraction, Isolation, Identification, and Characterization of Anthocyanin from Banana Inflorescence by Liquid Chromatography-Mass Spectroscopy and Its pH Sensitivity. Biomimetics (Basel) 2024; 9:702. [PMID: 39590274 PMCID: PMC11592308 DOI: 10.3390/biomimetics9110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Anthocyanin is an important flavonoid with antioxidant, anticancer, and anti-inflammatory properties. This research investigates the anthocyanin content of Cavendish banana inflorescence, a by-product often discarded as agricultural waste. The study employs two drying methods, namely oven-drying and freeze-drying, followed by accelerated solvent extraction using acidified water and methanol. Liquid chromatography-mass spectroscopy (LC-MS) results confirm banana inflorescence as a rich source of anthocyanins. According to LC-MS analysis, freeze-dried banana inflorescence extracted in methanol at 80 °C exhibits the highest anthocyanin content (130.01 mg/100 g). This sample also demonstrates superior characteristics, including a chroma value of 40.02 ± 0.01, a redness value of 38.09 ± 0.16, 18.46 ± 0.02 °Brix, a total phenolic content of 42.5 ± 1.00 mg/g, expressed as gallic acid equivalents, and a total antioxidant activity of 71.33 ± 0.08% when assessed with the DPPH method. Furthermore, the study identifies the predominant anthocyanin as cyanidin, along with the presence of other anthocyanins such as delphinidin (Dp), malvidin (Mv), petunidin (Pt), pelargonidin (Pg), and peonidin (Pn). Interestingly, the extracted anthocyanins demonstrate pH sensitivity, changing from red to brown as pH increases. These findings highlight the potential of utilizing Cavendish banana inflorescence for anthocyanin extraction, offering sustainable waste valorization methods with promising applications in biomimetics and bioinspiration fields.
Collapse
Affiliation(s)
- Nuwanthi Senevirathna
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia; (N.S.); (M.H.); (I.O.)
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Morteza Hassanpour
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia; (N.S.); (M.H.); (I.O.)
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Ian O’Hara
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia; (N.S.); (M.H.); (I.O.)
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane 4000, Australia
- ARC Industrial Transformation Training Centre for Bioplastics and Biocomposites, Queensland University of Technology, Brisbane 4000, Australia
| | - Azharul Karim
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia; (N.S.); (M.H.); (I.O.)
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
7
|
Xiao W, Wu X, Zhou X, Zhang J, Huang J, Dai X, Ren H, Xu D. Assembly and comparative analysis of the first complete mitochondrial genome of zicaitai ( Brassica rapa var. Purpuraria): insights into its genetic architecture and evolutionary relationships. FRONTIERS IN PLANT SCIENCE 2024; 15:1475064. [PMID: 39450086 PMCID: PMC11499134 DOI: 10.3389/fpls.2024.1475064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Introduction Zicaitai (Brassica rapa var. purpuraria) is a Brassica variety renowned for its distinctive taste and rich nutritional profile. In recent years, the mitochondrial genomes of several Brassica species have been documented, but the mitogenome of Zicaitai remains unreported. Methods In this study, we characterized the Zicaitai mitogenome achieved through the assembly of sequencing reads derived from both the Oxford Nanopore and Illumina platforms. A detailed comparative analysis was carried out with other Brassica species to draw comparisons and contrasts. In-depth analyses of codon usage patterns, instances of RNA editing, and the prevalence of sequence repeats within the mitogenome were also conducted to gain a more nuanced understanding of its genetic architecture. A phylogenetic analysis was performed, utilizing the coding sequences (CDS) from the mitochondrial genome of Zicaitai and that of 20 closely related species/varieties to trace evolutionary connections. Results The Zicaitai mitogenome is characterized by a circular structure spanning 219,779 base pairs, and it encompasses a total of 59 genes. This gene set includes 33 protein-coding genes, 23 tRNA genes, and 3 rRNA genes, providing a rich foundation for further genomic study. An analysis of the Ka/Ks ratios for 30 protein-coding genes shared by the mitogenomes of Zicaitai and seven other Brassica species revealed that most of these genes had undergone purifying selection. Additionally, the study explored the migration of genes between the chloroplast and nuclear genomes and the mitogenome, offering insights into the dynamics of genetic exchange within the Brassica genus. Discussion The collective results in this study will serve as a foundational resource, aiding future evolutionary studies focused on B. rapa, and contributing to a broader understanding of the complexities of plant evolution.
Collapse
Affiliation(s)
- Wanyu Xiao
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Xian Wu
- Northeast Agricultural University, Harbin, China
| | - Xianyu Zhou
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Jing Zhang
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Jianghua Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiuchun Dai
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Hailong Ren
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Donglin Xu
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| |
Collapse
|
8
|
Ijod G, Nawawi NIM, Anwar F, Rahim MHA, Ismail-Fitry MR, Adzahan NM, Azman EM. Recent microencapsulation trends for enhancing the stability and functionality of anthocyanins: a review. Food Sci Biotechnol 2024; 33:2673-2698. [PMID: 39184986 PMCID: PMC11339212 DOI: 10.1007/s10068-024-01603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 08/27/2024] Open
Abstract
Anthocyanins (ACNs) are water-soluble pigments in various fruits and vegetables known for their high antioxidant activity. They are used as natural food colorants and preservatives and have several medicinal benefits. However, their application in functional foods and nutraceuticals is often compromised by their low stability to heat, oxygen, enzymes, light, pH changes, and solubility issues. Spray drying has emerged as an effective microencapsulation technique to enhance the shelf life, quality, and stability of ACNs. This manuscript reviews the latest scientific developments in spray drying microencapsulation of ACNs-rich fruit extracts. Process optimization and the stability and physicochemical properties of the spray-dried, microencapsulated ACNs-rich powders are discussed. This review also covers functional food and nutraceutical applications and introduces novel encapsulation methods, such as freeze-drying, supercritical carbon dioxide (SC-CO2), coacervation, drum drying, and electrospraying, highlighting their potential in improving the utility of ACNs-rich fruit extracts.
Collapse
Affiliation(s)
- Giroon Ijod
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - Nur Izzati Mohamed Nawawi
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100 Pakistan
| | - Muhamad Hafiz Abd Rahim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - Noranizan Mohd Adzahan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - Ezzat Mohamad Azman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
9
|
Liu Y, Fernandes I, Mateus N, Oliveira H, Han F. The Role of Anthocyanins in Alleviating Intestinal Diseases: A Mini Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5491-5502. [PMID: 38446808 DOI: 10.1021/acs.jafc.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Anthocyanins are phytonutrients with physiological activity belonging to the flavonoid family whose transport and absorption in the human body follow specific pathways. In the upper gastrointestinal tract, anthocyanins are rarely absorbed intact by active transporters, with most reaching the colon, where bacteria convert them into metabolites. There is mounting evidence that anthocyanins can be used for prevention and treatment of intestinal diseases, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and colorectal cancer (CRC), through the protective function on the intestinal epithelial barrier, immunomodulation, antioxidants, and gut microbiota metabolism. Dietary anthocyanins are summarized in this comprehensive review with respect to their classification and structure as well as their absorption and transport mechanisms within the gastrointestinal tract. Additionally, the review delves into the role and mechanism of anthocyanins in treating common intestinal diseases. These insights will deepen our understanding of the potential benefits of natural anthocyanins for intestinal disorders.
Collapse
Affiliation(s)
- Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Iva Fernandes
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China
- Heyang Experimental Demonstration Station, Northwest A&F University, Weinan 715300, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yongning 750104, China
| |
Collapse
|
10
|
Zhao S, Fu S, Cao Z, Liu H, Huang S, Li C, Zhang Z, Yang H, Wang S, Luo J, Long T. OsUGT88C3 Encodes a UDP-Glycosyltransferase Responsible for Biosynthesis of Malvidin 3- O-Galactoside in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:697. [PMID: 38475543 DOI: 10.3390/plants13050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The diversity of anthocyanins is largely due to the action of glycosyltransferases, which add sugar moieties to anthocyanidins. Although a number of glycosyltransferases have been identified to glycosylate anthocyanidin in plants, the enzyme that catalyzes malvidin galactosylation remains unclear. In this study, we identified three rice varieties with different leaf color patterns, different anthocyanin accumulation patterns, and different expression patterns of anthocyanin biosynthesis genes (ABGs) to explore uridine diphosphate (UDP)-glycosyltransferases (UGTs) responsible for biosynthesis of galactosylated malvidin. Based on correlation analysis of transcriptome data, nine candidate UGT genes coexpressed with 12 ABGs were identified (r values range from 0.27 to 1.00). Further analysis showed that the expression levels of one candidate gene, OsUGT88C3, were highly correlated with the contents of malvidin 3-O-galactoside, and recombinant OsUGT88C3 catalyzed production of malvidin 3-O-galactoside using UDP-galactose and malvidin as substrates. OsUGT88C3 was closely related to UGTs with flavone and flavonol glycosylation activities in phylogeny. Its plant secondary product glycosyltransferase (PSPG) motif ended with glutamine. Haplotype analysis suggested that the malvidin galactosylation function of OsUGT88C3 was conserved among most of the rice germplasms. OsUGT88C3 was highly expressed in the leaf, pistil, and embryo, and its protein was located in the endoplasmic reticulum and nucleus. Our findings indicate that OsUGT88C3 is responsible for the biosynthesis of malvidin 3-O-galactoside in rice and provide insight into the biosynthesis of anthocyanin in plants.
Collapse
Affiliation(s)
- Sihan Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Shuying Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Zhenfeng Cao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Hao Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Sishu Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Zhonghui Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Hongbo Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Tuan Long
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| |
Collapse
|
11
|
Indiarto R, Reni R, Utama GL, Subroto E, Pangawikan AD, Djali M. The physicochemical, antioxidant, and sensory properties of chocolate biscuits incorporated with encapsulated mangosteen ( Garcinia mangostana L.) peel extract. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2159429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Reni Reni
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Gemilang Lara Utama
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Aldila Din Pangawikan
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mohamad Djali
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
12
|
Ren H, Xu D, Xiao W, Zhou X, Li G, Zou J, Zhang H, Zhang Z, Zhang J, Zheng Y. Chromosome-level genome assembly and annotation of Zicaitai (Brassica rapa var. purpuraria). Sci Data 2023; 10:759. [PMID: 37923891 PMCID: PMC10624672 DOI: 10.1038/s41597-023-02668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Zicaitai is a seasonal vegetable known for its high anthocyanin content in both stalks and leaves, yet its reference genome has not been published to date. Here, we generated the first chromosome-level genome assembly of Zicaitai using a combination of PacBio long-reads, Illumina short-reads, and Hi-C sequencing techniques. The final genome length is 474.12 Mb with a scaffold N50 length of 43.82 Mb, a BUSCO score of 99.30% and the LAI score of 10.14. Repetitive elements accounted for 60.89% (288.72 Mb) of the genome, and Hi-C data enabled the allocation of 430.87 Mb of genome sequences to ten pseudochromosomes. A total of 42,051 protein-coding genes were successfully predicted using multiple methods, of which 99.74% were functionally annotated. Notably, comparing the genome of Zicaitai with seven other species in the Cruciferae family revealed strong conservation in terms of gene numbers and structures. Overall, the high-quality genome assembly provides a critical resource for studying the genetic basis of important agronomic traits in Zicaitai.
Collapse
Affiliation(s)
- Hailong Ren
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510308, China
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, 510640, China
| | - Donglin Xu
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510308, China
| | - Wanyu Xiao
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510308, China
| | - Xianyu Zhou
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510308, China
| | - Guangguang Li
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510308, China
| | - Jiwen Zou
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510308, China
| | - Hua Zhang
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510308, China.
| | - Zhibin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China.
| | - Jing Zhang
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510308, China.
| | - Yansong Zheng
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510308, China.
| |
Collapse
|
13
|
Li XX, Li ZY, Zhu W, Wang YQ, Liang YR, Wang KR, Ye JH, Lu JL, Zheng XQ. Anthocyanin metabolism and its differential regulation in purple tea (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107875. [PMID: 37451003 DOI: 10.1016/j.plaphy.2023.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Tea plants (Camellia sinensis) typically contain high-flavonoid phytochemicals like catechins. Recently, new tea cultivars with unique purple-colored leaves have gained attention. These purple tea cultivars are enriched with anthocyanin, which provides an interesting perspective for studying the metabolic flux of the flavonoid pathway. An increasing number of studies are focusing on the leaf color formation of purple tea and this review aims to summarize the latest progress made on the composition and accumulation of anthocyanins in tea plants. In addition, the regulation mechanism in its synthesis will be discussed and a hypothetical regulation model for leaf color transformation during growth will be proposed. Some novel insights are presented to facilitate future in-depth studies of purple tea to provide a theoretical basis for targeted breeding programs in leaf color.
Collapse
Affiliation(s)
- Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ze-Yu Li
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Wan Zhu
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ying-Qi Wang
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Kai-Rong Wang
- General Agrotechnical Extension Station of Ningbo City, Ningbo, Zhejiang, 315000, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
14
|
Socha MW, Flis W, Wartęga M, Szambelan M, Pietrus M, Kazdepka-Ziemińska A. Raspberry Leaves and Extracts-Molecular Mechanism of Action and Its Effectiveness on Human Cervical Ripening and the Induction of Labor. Nutrients 2023; 15:3206. [PMID: 37513625 PMCID: PMC10383074 DOI: 10.3390/nu15143206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The gestational period is an incredibly stressful time for a pregnant woman. Pregnant patients constantly seek effective and reliable compounds in order to achieve a healthy labor. Nowadays, increasing numbers of women use herbal preparations and supplements during pregnancy. One of the most popular and most frequently chosen herbs during pregnancy is the raspberry leaf (Rubus idaeus). Raspberry extracts are allegedly associated with a positive effect on childbirth through the induction of uterine contractions, acceleration of the cervical ripening, and shortening of childbirth. The history of the consumption of raspberry leaves throughout pregnancy is vast. This review shows the current status of the use of raspberry leaves in pregnancy, emphasizing the effect on the cervix, and the safety profile of this herb. The majority of women apply raspberry leaves during pregnancy to induce and ease labor. However, it has not been possible to determine the exact effect of using raspberry extracts on the course of childbirth and the perinatal period. Additionally, it is unclear whether this herb has only positive effects. The currently available data indicate a weak effect of raspberry leaf extracts on labor induction and, at the same time, their possible negative impact on cervical ripening.
Collapse
Affiliation(s)
- Maciej W Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, St. Adalbert's Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, St. Adalbert's Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Miłosz Pietrus
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Anita Kazdepka-Ziemińska
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
| |
Collapse
|
15
|
Zeng S, Lin S, Wang Z, Zong Y, Wang Y. The health-promoting anthocyanin petanin in Lycium ruthenicum fruit: a promising natural colorant. Crit Rev Food Sci Nutr 2023; 64:10484-10497. [PMID: 37351558 DOI: 10.1080/10408398.2023.2225192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Acylated anthocyanins derived from dietary sources have gained significant attention due to their health-promoting properties and potential as natural colorants with high stability. However, exploration of the functional food products using acylated anthocyanins enriched in fruits and vegetables remains largely delayed in food industries. The black goji (Lycium ruthencium) fruit (LRF) is a functional food that is extensively used due to its exceptionally high levels of acylated anthocyanins, including petanin. This review provides a comprehensive summary of the functional properties and anthocyanin components of LRF. The stability, bioaccessibility, bioavailability, and bioactivities of petanin, the major anthocyanin component, are compared with those of LRF anthocyanin extracts and other food sources. Furthermore, the biosynthetic pathway and regulatory network of petanin in LRF are proposed and constructed, respectively. The key genes that could be potentially used for metabolic engineering to produce petanin are predicted. Finally, the potential application of petanin derivatives in the food industry is also discussed. This review presents comprehensive and systematic information about the dual-function of petanin as a bioactive component and a promising natural colorant for future food industrial applications.
Collapse
Affiliation(s)
- Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Lin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiqiang Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zong
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Rosales TKO, Fabi JP. Valorization of polyphenolic compounds from food industry by-products for application in polysaccharide-based nanoparticles. Front Nutr 2023; 10:1144677. [PMID: 37293672 PMCID: PMC10244521 DOI: 10.3389/fnut.2023.1144677] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the last decades, evidence has indicated the beneficial properties of dietary polyphenols. In vitro and in vivo studies support that the regular intake of these compounds may be a strategy to reduce the risks of some chronic non-communicable diseases. Despite their beneficial properties, they are poorly bioavailable compounds. Thus, the main objective of this review is to explore how nanotechnology improves human health while reducing environmental impacts with the sustainable use of vegetable residues, from extraction to the development of functional foods and supplements. This extensive literature review discusses different studies based on the application of nanotechnology to stabilize polyphenolic compounds and maintain their physical-chemical stability. Food industries commonly generate a significant amount of solid waste. Exploring the bioactive compounds of solid waste has been considered a sustainable strategy in line with emerging global sustainability needs. Nanotechnology can be an efficient tool to overcome the challenge of molecular instability, especially using polysaccharides such as pectin as assembling material. Complex polysaccharides are biomaterials that can be extracted from citrus and apple peels (from the juice industries) and constitute promising wall material stabilizing chemically sensitive compounds. Pectin is an excellent biomaterial to form nanostructures, as it has low toxicity, is biocompatible, and is resistant to human enzymes. The potential extraction of polyphenols and polysaccharides from residues and their inclusion in food supplements may be a possible application to reduce environmental impacts and constitutes an approach for effectively including bioactive compounds in the human diet. Extracting polyphenolics from industrial waste and using nanotechnology may be feasible to add value to food by-products, reduce impacts on nature and preserve the properties of these compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
17
|
De Mori G, Cipriani G. Marker-Assisted Selection in Breeding for Fruit Trait Improvement: A Review. Int J Mol Sci 2023; 24:ijms24108984. [PMID: 37240329 DOI: 10.3390/ijms24108984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Breeding fruit species is time-consuming and expensive. With few exceptions, trees are likely the worst species to work with in terms of genetics and breeding. Most are characterized by large trees, long juvenile periods, and intensive agricultural practice, and environmental variability plays an important role in the heritability evaluations of every single important trait. Although vegetative propagation allows for the production of a significant number of clonal replicates for the evaluation of environmental effects and genotype × environment interactions, the spaces required for plant cultivation and the intensity of work necessary for phenotypic surveys slow down the work of researchers. Fruit breeders are very often interested in fruit traits: size, weight, sugar and acid content, ripening time, fruit storability, and post-harvest practices, among other traits relevant to each individual species. The translation of trait loci and whole-genome sequences into diagnostic genetic markers that are effective and affordable for use by breeders, who must choose genetically superior parents and subsequently choose genetically superior individuals among their progeny, is one of the most difficult tasks still facing tree fruit geneticists. The availability of updated sequencing techniques and powerful software tools offered the opportunity to mine tens of fruit genomes to find out sequence variants potentially useful as molecular markers. This review is devoted to analysing what has been the role of molecular markers in assisting breeders in selection processes, with an emphasis on the fruit traits of the most important fruit crops for which examples of trustworthy molecular markers have been developed, such as the MDo.chr9.4 marker for red skin colour in apples, the CCD4-based marker CPRFC1, and LG3_13.146 marker for flesh colour in peaches, papayas, and cherries, respectively.
Collapse
Affiliation(s)
- Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
18
|
Peonidin-3-O-Glucoside from Purple Corncob Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Mitochondrial and Lysosome Functions to Reduce Oxidative Stress and Inflammation. Nutrients 2023; 15:nu15020372. [PMID: 36678243 PMCID: PMC9866220 DOI: 10.3390/nu15020372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
A frequent chronic liver condition across the world is nonalcoholic fatty liver disease (NAFLD). Oxidative stress caused by lipid accumulation is generally considered to be the main cause of NAFLD. Anthocyanins can effectively inhibit the production of reactive oxygen species and improve oxidative stress. In this work, six major anthocyanins were separated from purple corncob by semi-preparative liquid chromatography. The effects of the 6 kinds of anthocyanins against NAFLD were investigated using a free fatty acid (FFA)-induced cell model. The results showed that peonidin 3-O-glucoside (P3G) can significantly reduce lipid accumulation in the NAFLD cell model. The treatment with P3G also inhibited oxidative stress via inhibiting the excessive production of reactive oxygen species and superoxide anion, increasing glutathione levels, and enhancing the activities of SOD, GPX, and CAT. Further studies unveiled that treatment with P3G not only alleviated inflammation but also improved the depletion of mitochondrial content and damage of the mitochondrial electron transfer chain developed concomitantly in the cell model. P3G upregulated transcription factor EB (TFEB)-mediated lysosomal function and activated the peroxisome proliferator-activated receptor alpha (PPARα)-mediated peroxisomal lipid oxidation by interacting with PPARα possibly. Overall, this study added to our understanding of the protective effects of purple corn anthocyanins against NAFLD and offered suggestions for developing functional foods containing these anthocyanins.
Collapse
|