1
|
Lee S, Park NI, Park Y, Heo K, Kwon Y, Kim ES, Son YK, Lee KJ, Choi SY, Choi BS, Kim NS, Choi IY. Contents of paeoniflorin and albiflorin in two Korean landraces of Paeonia lactiflora and characterization of paeoniflorin biosynthesis genes in peony. Genes Genomics 2024; 46:1107-1122. [PMID: 39126602 DOI: 10.1007/s13258-024-01553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND RESEARCH PURPOSE Paeoniflorin and albiflorin are monoterpene glycosides that exhibit various medicinal properties in Paeonia species. This study explored the terpene biosynthesis pathway and analyzed the distribution of these compounds in different tissues of two Korean landraces of Paeonia lactiflora to gain insights into the biosynthesis of monoterpene glycosides in P. lactiflora and their potential applications. MATERIALS AND METHODS Two Korean landraces, Hongcheon var. and Hwacheon var, of P. lactiflora were used for the analyses. Contents of the paeoniflorin and albiflorin were analyzed using HPLC. RNA was extracted, sequenced, and subjected to transcriptome analysis. Differential gene expression, KEGG, and GO analyses were performed. Paeoniflorin biosynthesis genes were isolated from the transcriptomes using the genes in Euphorbia maculata with the NBLAST program. Phylogenetic analysis of of 1-Deoxy-D-xylulose 5-phosphate synthase (DOXPS), geranyl pyrophosphate synthase (GPPS), and pinene synthase (PS) was carried out with ClustalW and MEGA v5.0. RESULTS AND DISCUSSION Analysis of paeoniflorin and albiflorin content in different tissues of the two P. lactiflora landraces revealed significant variation. Transcriptome analysis yielded 36,602 unigenes, most of which were involved in metabolic processes. The DEG analysis revealed tissue-specific expression patterns with correlations between landraces. The isolation of biosynthetic genes identified 173 candidates. Phylogenetic analysis of the key enzymes in these pathways provides insights into their evolutionary relationships. The sequencing and analysis of DOXPS, GPPS, PS revealed distinct clades and subclades, highlighting their evolutionary divergence and functional conservation. Our findings highlight the roots as the primary sites of paeoniflorin and albiflorin accumulation in P. lactiflora, underscoring the importance of tissue-specific gene expression in their biosynthesis. CONCLUSION this study advances our understanding of monoterpene glycoside production and distribution in Paeonia, thereby guiding further plant biochemistry investigations.
Collapse
Affiliation(s)
- Seungki Lee
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, 25457, Korea
| | - Yeri Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, 25457, Korea
| | - Kweon Heo
- Department of Plant Resources and Applied Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Yongsoo Kwon
- Department of Pharmacy, Kangwon National University, Chucheon, 24341, Korea
| | - Eun Sil Kim
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Youn Kyoung Son
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Kyung Jin Lee
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | | | | | - Nam-Soo Kim
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Korea.
| | - Ik-Young Choi
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
2
|
Tyagi P, Prasad M, Mathur S, Ranjan R. Diosgenin biosynthesis investigation in medicinal herb (Tribulus terrestris) by transcriptome analysis. Gene 2024; 893:147937. [PMID: 38381509 DOI: 10.1016/j.gene.2023.147937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 02/22/2024]
Abstract
Next-generation sequencing (NGS) has revolutionized the analysis of specific genes, pathways, and their regulation in various species. Tribulus terrestris L., an annual medicinal herb of Zygophyllaceae family, has gained significant attention due to its diverse medicinal properties, including anti-inflammatory, antimicrobial, and anti-cancer effects. Diosgenin, a steroidal saponin, is the major bioactive compound responsible for the medicinal importance of T. terrestris. However, there is a paucity of information regarding the genes involved in the diosgenin biosynthetic pathway in T. terrestris. To address this gap, this study aimed to identify candidate genes associated with diosgenin biosynthesis through whole transcriptome profiling. A total of ∼7.9 GB of data, comprising 482 million reads, was obtained and assembled into 148,871 unigenes. Subsequently, functional annotations were assigned to 50 % of the unigenes using sequence similarity searches against the NCBI non-redundant (NR), Uniprot, KEGG, Pfam, GO, and COG databases, primarily based on Gene Ontology and KEGG-KAAS pathways. The majority of unigenes associated with the biosynthesis of the steroidal diosgenin backbone exhibited up-regulation in the fruit, leaf, and root tissues, except the SQE gene in root. The differential expression of selected genes was further validated through quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the study identified 21,026 unigenes related to transcription factors and 15,551 unigenes containing simple sequence repeats (SSR). Notably, di-nucleotide SSR motifs exhibited a high repeat frequency. These findings greatly enhance our understanding of the diosgenin biosynthesis pathway and provide a basis for future research in molecular investigation and metabolic engineering, specifically for boosting diosgenin content.
Collapse
Affiliation(s)
- Parul Tyagi
- Plant Molecular Biology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India
| | - Mrinalini Prasad
- Plant Molecular Biology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India
| | - Shivangi Mathur
- Plant Molecular Biology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India
| | - Rajiv Ranjan
- Plant Molecular Biology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India.
| |
Collapse
|
3
|
Singh D, Mittal N, Verma S, Singh A, Siddiqui MH. Applications of some advanced sequencing, analytical, and computational approaches in medicinal plant research: a review. Mol Biol Rep 2023; 51:23. [PMID: 38117315 DOI: 10.1007/s11033-023-09057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
The potential active chemicals found in medicinal plants, which have long been employed as natural medicines, are abundant. Exploring the genes responsible for producing these compounds has given new insights into medicinal plant research. Previously, the authentication of medicinal plants was done via DNA marker sequencing. With the advancement of sequencing technology, several new techniques like next-generation sequencing, single molecule sequencing, and fourth-generation sequencing have emerged. These techniques enshrined the role of molecular approaches for medicinal plants because all the genes involved in the biosynthesis of medicinal compound(s) could be identified through RNA-seq analysis. In several research insights, transcriptome data have also been used for the identification of biosynthesis pathways. miRNAs in several medicinal plants and their role in the biosynthesis pathway as well as regulation of the disease-causing genes were also identified. In several research articles, an in silico study was also found to be effective in identifying the inhibitory effect of medicinal plant-based compounds against virus' gene(s). The use of advanced analytical methods like spectroscopy and chromatography in metabolite proofing of secondary metabolites has also been reported in several recent research findings. Furthermore, advancement in molecular and analytic methods will give new insight into studying the traditionally important medicinal plants that are still unexplored.
Collapse
Affiliation(s)
- Dhananjay Singh
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Nishu Mittal
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | - Swati Verma
- College of Horticulture and Forestry Thunag, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Anjali Singh
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | | |
Collapse
|
4
|
Ezoe A, Iuchi S, Sakurai T, Aso Y, Tokunaga H, Vu AT, Utsumi Y, Takahashi S, Tanaka M, Ishida J, Ishitani M, Seki M. Fully sequencing the cassava full-length cDNA library reveals unannotated transcript structures and alternative splicing events in regions with a high density of single nucleotide variations, insertions-deletions, and heterozygous sequences. PLANT MOLECULAR BIOLOGY 2023; 112:33-45. [PMID: 37014509 DOI: 10.1007/s11103-023-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/27/2023] [Indexed: 05/09/2023]
Abstract
The primary transcript structure provides critical insights into protein diversity, transcriptional modification, and functions. Cassava transcript structures are highly diverse because of alternative splicing (AS) events and high heterozygosity. To precisely determine and characterize transcript structures, fully sequencing cloned transcripts is the most reliable method. However, cassava annotations were mainly determined according to fragmentation-based sequencing analyses (e.g., EST and short-read RNA-seq). In this study, we sequenced the cassava full-length cDNA library, which included rare transcripts. We obtained 8,628 non-redundant fully sequenced transcripts and detected 615 unannotated AS events and 421 unannotated loci. The different protein sequences resulting from the unannotated AS events tended to have diverse functional domains, implying that unannotated AS contributes to the truncation of functional domains. The unannotated loci tended to be derived from orphan genes, implying that the loci may be associated with cassava-specific traits. Unexpectedly, individual cassava transcripts were more likely to have multiple AS events than Arabidopsis transcripts, suggestive of the regulated interactions between cassava splicing-related complexes. We also observed that the unannotated loci and/or AS events were commonly in regions with abundant single nucleotide variations, insertions-deletions, and heterozygous sequences. These findings reflect the utility of completely sequenced FLcDNA clones for overcoming cassava-specific annotation-related problems to elucidate transcript structures. Our work provides researchers with transcript structural details that are useful for annotating highly diverse and unique transcripts and alternative splicing events.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Tetsuya Sakurai
- Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Yukie Aso
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Hiroki Tokunaga
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, Okinawa, 907-0002, Japan
| | - Anh Thu Vu
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Manabu Ishitani
- International Center for Tropical Agriculture (CIAT), Km 17, Recta Cali-Palmira Apartado Aéreo 6713, Cali, Colombia
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|