1
|
Zhang Z, Xiong R, Hu Q, Zhang Q, Wang S, Chen Y. Review on anti-tumour lipid nano drug delivery systems of traditional Chinese medicine. J Drug Target 2025; 33:704-716. [PMID: 39743936 DOI: 10.1080/1061186x.2024.2448708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
In recent years, the use of traditional Chinese medicine (TCM) in the treatment of cancer has received widespread attention. Treatment of tumours using TCM can effectively reduce the side effects of anti-tumour drugs, meanwhile to improve the treatment efficacy of patients. However, most of the active ingredients in TCM, such as saponins, alkaloids, flavonoids, volatile oils, etc., have defects such as low bioavailability and poor solubility in clinical application, which seriously restrict the application of TCM. Meanwhile, the encapsulation of TCM into lipid nano-delivery systems for cancer therapy has received much attention. Lipid nano-delivery systems are obtained by using phospholipids as the base material and adding other auxiliary materials under a certain preparation process, including, for example, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), microemulsions, and self-microemulsion drug delivery systems (SMEDDS), can resolve the application problems of TCM by improving the efficacy of active ingredients of TCM and reducing the toxicity of anti-tumour drugs. This paper focuses on the categories, development status, and research progress of lipid nano delivery system of TCM, aiming to provide a certain theoretical basis for further in-depth research and rational application of these systems.
Collapse
Affiliation(s)
- Ziwei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Rui Xiong
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Qiyan Hu
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Qiang Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Shaozhen Wang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Yunyan Chen
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| |
Collapse
|
2
|
Lôbo GCNB, Silva ALG, Barros-Cordeiro KB, Almeida RDN, Silva IGMD, Sales MP, Paterno LG, Báo SN. Copper Oxide Nanorods: Potential Agents against Breast Cancer. ACS APPLIED BIO MATERIALS 2025. [PMID: 40377927 DOI: 10.1021/acsabm.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Breast cancer is the second most prevalent type of cancer worldwide and the leading cause of cancer-related mortality among women. Despite substantial advancements in scientific research, cancer continues to pose a major challenge due to its high global incidence. While numerous nontargeted therapies have been developed, nanotechnology-based platforms are emerging as a promising future for cancer treatment. In this context, we investigated the in vitro antitumor activity of citrate-coated copper oxide nanorods (CuO-nr, aspect ratio ∼3) against breast cancer cells. The CuO-nr colloids demonstrated stability for over 120 days under ambient conditions, with an average hydrodynamic diameter of 107.1 ± 0.67 nm and a zeta potential of -23.8 ± 1.87 mV. Cell viability assays showed that CuO-nr were minimally harmful to nontumor fibroblast cells but highly cytotoxic to MCF-7 breast cancer cells. Flow cytometry analysis suggested that early apoptosis may be the primary mechanism of cell death induced by these nanoparticles. Furthermore, significant alterations in cell morphology were observed through scanning electron microscopy. These findings indicate that citrate-coated CuO-nr possess effective antitumor activity and hold promise as potential agents for targeted cancer therapy.
Collapse
Affiliation(s)
- Giovanna C N B Lôbo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Federal District, Brasília 70910-900, Brazil
| | - Ana Luísa G Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Federal District, Brasília 70910-900, Brazil
| | - Karine B Barros-Cordeiro
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Federal District, Brasília 70910-900, Brazil
| | - Raquel das Neves Almeida
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Federal District, Brasília 70910-900, Brazil
| | | | - Matheus Pereira Sales
- Laboratory of Research on Polymers and Nanomaterials, Institute of Chemistry, University of Brasília, Federal District, Brasília 70910-900, Brazil
| | - Leonardo Giordano Paterno
- Laboratory of Research on Polymers and Nanomaterials, Institute of Chemistry, University of Brasília, Federal District, Brasília 70910-900, Brazil
| | - Sônia N Báo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Federal District, Brasília 70910-900, Brazil
| |
Collapse
|
3
|
Llaguno-Munive M, Vazquez-Lopez MI, Garcia-Lopez P. Solid Lipid Nanoparticles, an Alternative for the Treatment of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:10712. [PMID: 39409041 PMCID: PMC11476567 DOI: 10.3390/ijms251910712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Within the field of nanomedicine, which is revolutionizing cancer treatment, solid lipid nanoparticles (SLNs) have shown advantages over conventional chemotherapy when tested on cancer cells in preclinical studies. SLNs have proven to be an innovative strategy for the treatment of triple-negative breast cancer cells, providing greater efficiency than existing treatments in various studies. The encapsulation of antineoplastic drugs in SLNs has facilitated a sustained, controlled, and targeted release, which enhances therapeutic efficiency and reduces adverse effects. Moreover, the surface of SLNs can be modified to increase efficiency. For instance, the coating of these particles with polyethylene glycol (PEG) decreases their opsonization, resulting in a longer life in the circulatory system. The creation of positively charged cationic SLNs (cSLNs), achieved by the utilization of surfactants or ionic lipids with positively charged structural groups, increases their affinity for cell membranes and plasma proteins. Hyaluronic acid has been added to SLNs so that the distinct pH of tumor cells would stimulate the release of the drug and/or genetic material. The current review summarizes the recent research on SLNs, focusing on the encapsulation and transport of therapeutic agents with a cytotoxic effect on triple-negative breast cancer.
Collapse
Affiliation(s)
- Monserrat Llaguno-Munive
- Laboratorio de Física Médica, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Maria Ines Vazquez-Lopez
- Laboratorio de Fármaco-Oncología y Nanomedicina, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Patricia Garcia-Lopez
- Laboratorio de Fármaco-Oncología y Nanomedicina, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| |
Collapse
|
4
|
de Souza VMR, Maciel NB, Machado YAA, de Sousa JMS, Rodrigues RRL, dos Santos ALS, Gonçalves da Silva MG, Martins da Silva IG, Barros-Cordeiro KB, Báo SN, Tavares JF, Rodrigues KADF. Anti- Leishmania amazonensis Activity of Morolic Acid, a Pentacyclic Triterpene with Effects on Innate Immune Response during Macrophage Infection. Microorganisms 2024; 12:1392. [PMID: 39065160 PMCID: PMC11279160 DOI: 10.3390/microorganisms12071392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Leishmaniasis is a group of infectious diseases transmitted to humans during vector bites and caused by protozoans of the genus Leishmania. Conventional therapies face challenges due to their serious side effects, prompting research into new anti-leishmania agents. In this context, we investigated the effectiveness of morolic acid, a pentacyclic triterpene, on L. amazonensis promastigotes and amastigotes. The present study employed the MTT assay, cytokine analysis using optEIATM kits, an H2DCFDA test, and nitric oxide dosage involving nitrite production and Griess reagent. Morolic acid inhibited promastigote and axenic amastigote growth forms at IC50 values of 1.13 µM and 2.74 µM, respectively. For cytotoxicity to macrophages and VERO cells, morolic acid obtained respective CC50 values of 68.61 µM and 82.94 µM. The compound causes damage to the parasite membrane, leading to cellular leakage. In the infection assay, there was a decrease in parasite load, resulting in a CI50 of 2.56 µM. This effect was associated with immunomodulatory activity, altering macrophage structural and cellular parasite elimination mechanisms. Morolic acid proved to be an effective and selective natural compound, making it a strong candidate for future in vivo studies in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Vanessa Maria Rodrigues de Souza
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University Delta of Parnaiba, Parnaíba 64202-020, PI, Brazil; (V.M.R.d.S.); (N.B.M.); (Y.A.A.M.); (J.M.S.d.S.); (R.R.L.R.); (A.L.S.d.S.); (M.G.G.d.S.)
| | - Nicolle Barreira Maciel
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University Delta of Parnaiba, Parnaíba 64202-020, PI, Brazil; (V.M.R.d.S.); (N.B.M.); (Y.A.A.M.); (J.M.S.d.S.); (R.R.L.R.); (A.L.S.d.S.); (M.G.G.d.S.)
| | - Yasmim Alves Aires Machado
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University Delta of Parnaiba, Parnaíba 64202-020, PI, Brazil; (V.M.R.d.S.); (N.B.M.); (Y.A.A.M.); (J.M.S.d.S.); (R.R.L.R.); (A.L.S.d.S.); (M.G.G.d.S.)
| | - Julyanne Maria Saraiva de Sousa
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University Delta of Parnaiba, Parnaíba 64202-020, PI, Brazil; (V.M.R.d.S.); (N.B.M.); (Y.A.A.M.); (J.M.S.d.S.); (R.R.L.R.); (A.L.S.d.S.); (M.G.G.d.S.)
| | - Raiza Raianne Luz Rodrigues
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University Delta of Parnaiba, Parnaíba 64202-020, PI, Brazil; (V.M.R.d.S.); (N.B.M.); (Y.A.A.M.); (J.M.S.d.S.); (R.R.L.R.); (A.L.S.d.S.); (M.G.G.d.S.)
| | - Airton Lucas Sousa dos Santos
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University Delta of Parnaiba, Parnaíba 64202-020, PI, Brazil; (V.M.R.d.S.); (N.B.M.); (Y.A.A.M.); (J.M.S.d.S.); (R.R.L.R.); (A.L.S.d.S.); (M.G.G.d.S.)
| | - Maria Gabrielly Gonçalves da Silva
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University Delta of Parnaiba, Parnaíba 64202-020, PI, Brazil; (V.M.R.d.S.); (N.B.M.); (Y.A.A.M.); (J.M.S.d.S.); (R.R.L.R.); (A.L.S.d.S.); (M.G.G.d.S.)
| | - Ingrid Gracielle Martins da Silva
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (I.G.M.d.S.); (K.B.B.-C.); (S.N.B.)
| | - Karine Brenda Barros-Cordeiro
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (I.G.M.d.S.); (K.B.B.-C.); (S.N.B.)
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (I.G.M.d.S.); (K.B.B.-C.); (S.N.B.)
| | - Josean Fechine Tavares
- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Klinger Antonio da Franca Rodrigues
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University Delta of Parnaiba, Parnaíba 64202-020, PI, Brazil; (V.M.R.d.S.); (N.B.M.); (Y.A.A.M.); (J.M.S.d.S.); (R.R.L.R.); (A.L.S.d.S.); (M.G.G.d.S.)
| |
Collapse
|
5
|
Mo K, Kim A, Choe S, Shin M, Yoon H. Overview of Solid Lipid Nanoparticles in Breast Cancer Therapy. Pharmaceutics 2023; 15:2065. [PMID: 37631279 PMCID: PMC10457810 DOI: 10.3390/pharmaceutics15082065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Lipid nanoparticles (LNPs), composed of ionized lipids, helper lipids, and cholesterol, provide general therapeutic effects by facilitating intracellular transport and avoiding endosomal compartments. LNP-based drug delivery has great potential for the development of novel gene therapies and effective vaccines. Solid lipid nanoparticles (SLNs) are derived from physiologically acceptable lipid components and remain robust at body temperature, thereby providing high structural stability and biocompatibility. By enhancing drug delivery through blood vessels, SLNs have been used to improve the efficacy of cancer treatments. Breast cancer, the most common malignancy in women, has a declining mortality rate but remains incurable. Recently, as an anticancer drug delivery system, SLNs have been widely used in breast cancer, improving the therapeutic efficacy of drugs. In this review, we discuss the latest advances of SLNs for breast cancer treatment and their potential in clinical use.
Collapse
Affiliation(s)
- Kyumin Mo
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (K.M.); (A.K.); (S.C.)
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Ayoung Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (K.M.); (A.K.); (S.C.)
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Soohyun Choe
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (K.M.); (A.K.); (S.C.)
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Miyoung Shin
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Hyunho Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (K.M.); (A.K.); (S.C.)
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
6
|
Báo SN, Machado M, Da Silva AL, Melo A, Cunha S, Sousa SS, Malheiro AR, Fernandes R, Leite JRSA, Vasconcelos AG, Relvas J, Pintado M. Potential Biological Properties of Lycopene in a Self-Emulsifying Drug Delivery System. Molecules 2023; 28:molecules28031219. [PMID: 36770886 PMCID: PMC9920511 DOI: 10.3390/molecules28031219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
In recent years, lycopene has been highlighted due to its antioxidant and anti-inflammatory properties, associated with a beneficial effect on human health. The aim of this study was to advance the studies of antioxidant and anti-inflammatory mechanisms on human keratinocytes cells (HaCaT) of a self-emulsifying drug delivery system (SEDDS) loaded with lycopene purified from red guava (nanoLPG). The characteristics of nanoLPG were a hydrodynamic diameter of 205 nm, a polydispersity index of 0.21 and a zeta potential of -20.57, providing physical stability for the nanosystem. NanoLPG demonstrated antioxidant capacity, as shown using the ORAC methodology, and prevented DNA degradation (DNA agarose). Proinflammatory activity was evaluated by quantifying the cytokines TNF-α, IL-6 and IL-8, with only IL-8 showing a significant increase (p < 0.0001). NanoLPG showed greater inhibition of the tyrosinase and elastase enzymes, involved in the skin aging process, compared to purified lycopene (LPG). In vitro treatment for 24 h with 5.0 µg/mL of nanoLPG did not affect the viability of HaCaT cells. The ultrastructure of HaCaT cells demonstrated the maintenance of morphology. This contrasts with endoplasmic reticulum stresses and autophagic vacuoles when treated with LPG after stimulation or not with LPS. Therefore, the use of lycopene in a nanoemulsion may be beneficial in strategies and products associated with skin health.
Collapse
Affiliation(s)
- Sônia Nair Báo
- Laboratório de Microscopia e Microanálise, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília 70910-900, DF, Brazil
- Correspondence:
| | - Manuela Machado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Luisa Da Silva
- Laboratório de Microscopia e Microanálise, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília 70910-900, DF, Brazil
| | - Adma Melo
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sara Cunha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sérgio S. Sousa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Rita Malheiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rui Fernandes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José Roberto S. A. Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília 70910-900, DF, Brazil
- People & Science Pesquisa, Desenvolvimento e Inovação Ltda, Brasília 70910-900, DF, Brazil
| | - Andreanne G. Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília 70910-900, DF, Brazil
- People & Science Pesquisa, Desenvolvimento e Inovação Ltda, Brasília 70910-900, DF, Brazil
| | - João Relvas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|