1
|
Maçãs M, Biduski B, Ferragina A, Santos AAD, Huet M, Arendt EK, Gallagher E. Impact of conventional and emerging processing methods on alternative breads- a comprehensive review and meta-analysis. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39714071 DOI: 10.1080/10408398.2024.2442527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An increasing consumer demand for plant-based and high-protein options, motivated by health and sustainability, has resulted in a surge of food innovation in this area. Incorporating alternative plant sources, such as pulses and pseudocereals, has been proven to enhance the nutritional profile of baked products. However, these can also negatively impact the yeasted bread acceptability. In the bakery sector, it is crucial to consider how incorporating non-wheat ingredients influences product quality. Consequently, exploring effective treatments/processing methods becomes essential to minimize the impact of alternative plant ingredient additions. This review explores conventional and emerging processing approaches for alternative plant materials and discusses the nutritional value may be enhanced while maintaining high acceptability. A meta-analysis was undertaken to visualize the influence of plant processing technologies on product quality, specifically on loaf-specific volume and crumb texture. This review highlighted the importance of conventional processing methods when applied to bread. Additionally revealed the potential of emerging processing which can positively affect a loaf volume and texture when compared with non-processed plant ingredients. Such studies enabled the production of acceptable bakery products with higher levels of alternative ingredient incorporation. However, increased use of emerging technologies is dependent on further research and overcoming scaling-up difficulties.
Collapse
Affiliation(s)
- Mariana Maçãs
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
- Department of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Bárbara Biduski
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
| | - Alessandro Ferragina
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - Melanie Huet
- ESIROI Université de la Réunion, Reunion Island, France
| | - Elke K Arendt
- Department of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Eimear Gallagher
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Ireland
| |
Collapse
|
2
|
Rostamabadi H, Yildirim-Yalcin M, Demirkesen I, Toker OS, Colussi R, do Nascimento LÁ, Şahin S, Falsafi SR. Improving physicochemical and nutritional attributes of rice starch through green modification techniques. Food Chem 2024; 458:140212. [PMID: 38943947 DOI: 10.1016/j.foodchem.2024.140212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Rice, has long been an inseparable part of the human diet all over the world. As one of the most rapidly growing crops, rice has played a key role in securing the food chain of low-income food-deficit countries. Starch is the main component in rice granules which other than its nutritional essence, plays a key role in defining the physicochemical attributes of rice-based products. However, rice starch suffers from weak techno-functional characteristics (e.g., retrogradability of pastes, opacity of gels, and low shear/temperature resistibility. Green modification techniques (i.e. Non-thermal methods, Novel thermal (e.g., microwave, and ohmic heating) and enzymatic approaches) were shown to be potent tools in modifying rice starch characteristics without the exertion of unfavorable chemical reagents. This study corroborated the potential of green techniques for rice starch modification and provided deep insight for their further application instead of unsafe chemical methods.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meral Yildirim-Yalcin
- Istanbul Aydin University, Engineering Faculty, Food Engineering Department, 34295, Istanbul, Turkey
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Omer Said Toker
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210, Istanbul, Turkey
| | - Rosana Colussi
- Center for Pharmaceutical and Food Chemical Sciences, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Lucas Ávila do Nascimento
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Selin Şahin
- Faculty of Engineering, Chemical Engineering Department, Division of Unit Operations and Thermodynamics, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Seid Reza Falsafi
- Food Science and Technology Division, Agricultural Engineering Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, (AREEO), Dezful, Iran.
| |
Collapse
|
3
|
Jamali N, Sayadi M, Nejati R, Mohammadi F, Nematollahi A, Mollakhalili‐Meybodi N. Gluten-free Nan-e-Fasaee: Formulation optimization on the basis of quinoa flour and inulin. Food Sci Nutr 2024; 12:1146-1157. [PMID: 38370065 PMCID: PMC10867479 DOI: 10.1002/fsn3.3829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 02/20/2024] Open
Abstract
Diversification of gluten-free (GF) bakery products is considerably important, as those who suffer from gluten intolerance should follow a GF diet their whole life. Regarding this study, it was aimed at optimizing the formulation of a quinoa-based GF traditional bakery product, i.e. Nan-e-Fasaee using inulin as a bifunctional agent (both a prebiotic compound and a structure-forming agent). Otherwise, its potential role as a fat and sugar replacer was also assessed. For this purpose, short (S)- and long (L)-chain inulin were used as sugar and fat replacers, respectively, at 0%-50% w/w in quinoa flour (QF)-based GF Nan-e-Fasaee and optimization was done based on rheological, textural, and sensory analysis. Results indicated that QF diet provided the batter with the dominance of elastic modulus and increased hardness (i.e. 5170.0 ± 22.50 g in the presence of QF compared to 1477.0 ± 20.81 g in wheat-based ones). Inulin inclusion reduced the hardness, as the lowest was observed at S-inulin substitution levels of 40% and 50% w/w, with values equal to 2422.0 ± 20.81 and 2431.0 ± 35.57 g, respectively (the most similar ones to control sample). The interference of S-inulin with the non-gelatinized starch structure is supposed to decrease the hardness. The highest score in texture was also perceived at F6 and F13, with values equal to 8.00 ± 0.10 and 7.97 ± 0.05, respectively. Using S- and L-inulin in combination is found to improve the textural characteristics due to preventing the competitive role of sugar in water absorption in formulations containing L-inulin. Regarding optimization of quinoa-based GF Nan-e-Fasaee with reduced sugar and fat levels using inulin, it is found to be feasible.
Collapse
Affiliation(s)
- Narjes Jamali
- Student Research CommitteeFasa University of Medical SciencesFasaIran
| | - Mehran Sayadi
- Department of Food Safety and Hygiene, School of HealthFasa University of Medical SciencesFasaIran
| | - Roghayeh Nejati
- Department of Food Safety and Hygiene, School of HealthFasa University of Medical SciencesFasaIran
| | - Faezeh Mohammadi
- Department of Food Sciences and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of HealthFasa University of Medical SciencesFasaIran
| | - Neda Mollakhalili‐Meybodi
- Department of Food Sciences and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Research Center for Food Hygiene and SafetyShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
4
|
Park J, Kim HS. Rice-Based Gluten-Free Foods and Technologies: A Review. Foods 2023; 12:4110. [PMID: 38002168 PMCID: PMC10670158 DOI: 10.3390/foods12224110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Rice, one of the most widely consumed staples worldwide, serves as a versatile gluten-free substitute. However, review articles on technological developments in grain-free production focusing on rice are scarce. This review assesses various research results concerning the quality attributes of rice-based gluten-free foods, including bread, pasta, and beer. To optimize the key attributes in processed products, such as dough leavening in bread and the physical and cooking properties of noodles and pasta, research has focused on blending different gluten-free grains and incorporating additives that mimic the gluten function. Additionally, various processing technologies, such as starch preprocessing and extrusion puffing processes, have been employed to boost the quality of rice-based gluten-free products. Today, a variety of products, including bread, noodles, and beer, use rice as a partial replacement for barley or wheat. With rapid advancements in technology, a noticeable portion of consumers now shows a preference for products containing rice as a substitute. This trend indicates that rice-based gluten-free foods can be enhanced by leveraging the latest developments in gluten-free product technologies, particularly in countries where rice is a staple or is predominantly cultivated.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon 16429, Gyeonggi, Republic of Korea
| | | |
Collapse
|
5
|
Erdoğdu Ö, Görgüç A, Yılmaz FM. Functionality Enhancement of Pea Protein Powder via High-Intensity Ultrasound: Screening in-vitro Digestion, o/w Emulsion Properties and Testing in Gluten-Free Bread. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:597-603. [PMID: 37624568 DOI: 10.1007/s11130-023-01087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Structural modification of protein prior to food application is an emergent approach to improve functionalization. The effectiveness of high-power ultrasound at varying amplitudes (0-100%) on the properties of pea protein powder was investigated in this study. The resulting modification was also tested with model gluten-free bread formulation and by screening the emulsion properties within vegetable oil. The 50% and beyond amplitude levels had significant impact on protein solubility, viscosity, Fourier Transform Infrared (FTIR) spectra, emulsion activity and stability. Foaming capacity and stability were enhanced with 75 and 100% amplitudes while the 25% amplitude exhibited the highest absolute zeta-potential. There was a concomitant increase in ultrasound amplitude and oil-binding capacity (2.83-6.43 g/g) where the water-holding capacity gradually decreased (5.78-3.61 g/g) with the increase in ultrasound power. The increase in ultrasound power led to decrease in L* values but progressively increased the total color difference (ΔE). Sonication (50% amplitude) also promoted the in-vitro digestibility of proteins by 22% as compared to the untreated sample. Scanning electron microscopy (SEM) fairly depictured the structural modification and FTIR spectra clearly demonstrated conformational changes in protein powders. The fortification with restructured pea protein powder significantly affected the volume and adhesiveness of glutenfree bread.
Collapse
Affiliation(s)
- Özlem Erdoğdu
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Efeler, Aydın, 09010, Türkiye
| | - Ahmet Görgüç
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Efeler, Aydın, 09010, Türkiye
| | - Fatih Mehmet Yılmaz
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Efeler, Aydın, 09010, Türkiye.
| |
Collapse
|
6
|
Tian Y, Ding L, Liu Y, Shi L, Wang T, Wang X, Dang B, Li L, Gou G, Wu G, Wang F, Wang L. The Effect of Different Milling Methods on the Physicochemical and In Vitro Digestibility of Rice Flour. Foods 2023; 12:3099. [PMID: 37628098 PMCID: PMC10453719 DOI: 10.3390/foods12163099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Preparation methods have been found to affect the physical and chemical properties of rice. This study prepared Guichao rice flour with wet, dry, semi-dry, and jet milling techniques. Differences in the particle size distribution of rice flour were investigated in order to assess their impact on pasting, thermal, gel, starch digestibility, and crystalline structure using an X-ray diffractometer (XRD) and a Rapid Visco Analyzer (RVA) across in vitro digestibility experiments. The results showed that semi-dry-milled rice flour (SRF) and wet-milled rice flour (WRF) were similar in damaged starch content, crystalline structure, and gelatinization temperature. However, compared with dry-milled rice flour (DRF) and jet-milled rice flour (JRF), SRF had less damaged starch, a higher absorption enthalpy value, and a higher gelatinization temperature. For starch digestibility, the extended glycemic index (eGI) values of WRF (85.30) and SRF (89.97) were significantly lower than those of DRF (94.47) and JRF (99.27). In general, the physicochemical properties and starch digestibility of WRF and SRF were better than those of DRF and JRF. SRF retained the advantages of WRF while avoiding the high energy consumption, high water consumption, and microbial contamination disadvantages of WRF and was able to produce better rice flour-associated products.
Collapse
Affiliation(s)
- Yaning Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Lan Ding
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Yonghui Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Li Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Tong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Xueqing Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Bin Dang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Linglei Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Guoyuan Gou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Guiyun Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| |
Collapse
|
7
|
Nie M, Piao C, Wang A, Xi H, Chen Z, He Y, Wang L, Liu L, Huang Y, Wang F, Tong LT. Physicochemical properties and in vitro digestibility of highland barley starch with different extraction methods. Carbohydr Polym 2023; 303:120458. [PMID: 36657856 DOI: 10.1016/j.carbpol.2022.120458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The objective of this study was to compare the structural, thermal, rheological and digestive properties of highland barley starch (HBS) by different extraction methods. Five techniques were used to extract HBS: Alkali extraction, Ultrasound extraction, double enzyme extraction (DE), three enzyme extraction (TE) and ultrasonic assisted TE (U-TE). The results indicated that the Ultrasound extracted HBS had fewer Maltese crosses, lower molecular weight (Mw), and higher content of damaged starch (P < 0.05). Meanwhile, DE extracted HBS had higher Mw, and the content of short amylopectin than that of Alkali extracted HBS (P < 0.05). Additionally, the DE extracted HBS showed the highest relative crystallinity and good short-range ordered structure, which led to the outcome of stronger thermal stability and higher values of G' and G'' (P < 0.05). These results indicated that enzymatic extraction could better protect the resistance of HBS by protecting its physicochemical properties.
Collapse
Affiliation(s)
- Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Huihan Xi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Zhiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yue He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
8
|
Nie M, Piao C, Li J, He Y, Xi H, Chen Z, Wang L, Liu L, Huang Y, Wang F, Tong L. Effects of Different Extraction Methods on the Gelatinization and Retrogradation Properties of Highland Barley Starch. Molecules 2022; 27:molecules27196524. [PMID: 36235062 PMCID: PMC9573687 DOI: 10.3390/molecules27196524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to compare the gelatinization and retrogradation properties of highland barley starch (HBS) using different extraction methods. We obtained HBS by three methods, including alkali extraction (A-HBS), ultrasound extraction (U-HBS) and enzyme extraction (E-HBS). An investigation was carried out using a rapid viscosity analyzer (RVA), texture profile analysis (TPA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectrometry (FTIR). It is shown that the different extraction methods did not change the crystalline type of HBS. E-HBS had the lowest damaged starch content and highest relative crystallinity value (p < 0.05). Meanwhile, A-HBS had the highest peak viscosity, indicating the best water absorption (p < 0.05). Moreover, E-HBS had not only higher G′ and G″ values, but also the highest gel hardness value, reflecting its strong gel structure (p < 0.05). These results confirmed that E-HBS provided better pasting stability and rheological properties, while U-HBS provides benefits of reducing starch retrogradation.
Collapse
Affiliation(s)
- Mengzi Nie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiaxin Li
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue He
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huihan Xi
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiying Chen
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Wang
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liya Liu
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yatao Huang
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.W.); (L.T.); Tel./Fax: +86-10-6281-7417 (L.T.)
| | - Litao Tong
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.W.); (L.T.); Tel./Fax: +86-10-6281-7417 (L.T.)
| |
Collapse
|