1
|
Acar Cevik U, Ünver H, Bostancı HE, Tüzün B, Gedik Nİ, Kocyigit ÜM. New hydrazone derivatives: synthesis, characterization, carbonic anhydrase I-II enzyme inhibition, anticancer activity and in silico studies. Z NATURFORSCH C 2025:znc-2024-0226. [PMID: 40080398 DOI: 10.1515/znc-2024-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/17/2025] [Indexed: 03/15/2025]
Abstract
A new series of hydrazone derivatives (1a-1l) were prepared from a condensation reaction between different hydrazide derivatives and 3-formylbenzoic acid. Through the use of several spectral techniques, such as 1H-NMR, 13C-NMR, and elemental analysis, the structures of the compounds were clarified. The crystal structure of compound 1d was obtained by single-crystal X-ray crystallography. They were found to have inhibitory effects on the anticancer potentials and human carbonic anhydrase isoforms I and II. Compound 1d was found to be the strongest inhibitor, with IC50 values of 0.133 µM against hCA I. Also, compound 1l showed the highest inhibitory activity with IC50 values of 3.244 µM against hCA II. Moreover, their cytotoxic effects on rat glioma cell and colon adeno carcinoma cell lines were evaluated. According to the cytotoxicity results, compounds 1j and 1l exhibited the highest cytotoxicity on the HT29 cell, while compounds 1e, 1g, and 1l showed the strongest cytotoxic effect on C6 cell line. Compound 1l, which carries the methoxy substituent at the 3rd position on the phenyl ring, was effective against both cancer cells and showed the highest inhibitory effect on hCA II. The ADME/T properties and molecular docking of the molecules with the highest activity were examined.
Collapse
Affiliation(s)
- Ulviye Acar Cevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 52944 Anadolu University , Eskişehir 26470, Türkiye
| | - Hakan Ünver
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskisehir, Türkiye
| | - Hayrani Eren Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Nurten İrem Gedik
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Türkiye
| | - Ümit M Kocyigit
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
2
|
Guan Q, Gao Z, Chen Y, Guo C, Chen Y, Sun H. Structural modification strategies of triazoles in anticancer drug development. Eur J Med Chem 2024; 275:116578. [PMID: 38889607 DOI: 10.1016/j.ejmech.2024.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The triazole functional group plays a pivotal role in the composition of biomolecules with potent anticancer activities, including numerous clinically approved drugs. The strategic utilization of the triazole fragment in the rational modification of lead compounds has demonstrated its ability to improve anticancer activities, enhance selectivity, optimize pharmacokinetic properties, and overcome resistance. There has been significant interest in triazole-containing hybrids in recent years due to their remarkable anticancer potential. However, previous reviews on triazoles in cancer treatment have failed to provide tailored design strategies specific to these compounds. Herein, we present an overview of design strategies encompassing a structure-modification approach for incorporating triazoles into hybrid molecules. This review offers valuable references and briefly introduces the synthesis of triazole derivatives, thereby paving the way for further research and advancements in the field of effective and targeted anticancer therapies.
Collapse
Affiliation(s)
- Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ziming Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuting Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
3
|
Kornicka A, Balewski Ł, Lahutta M, Kokoszka J. Umbelliferone and Its Synthetic Derivatives as Suitable Molecules for the Development of Agents with Biological Activities: A Review of Their Pharmacological and Therapeutic Potential. Pharmaceuticals (Basel) 2023; 16:1732. [PMID: 38139858 PMCID: PMC10747342 DOI: 10.3390/ph16121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Umbelliferone (UMB), known as 7-hydroxycoumarin, hydrangine, or skimmetine, is a naturally occurring coumarin in the plant kingdom, mainly from the Umbelliferae family that possesses a wide variety of pharmacological properties. In addition, the use of nanoparticles containing umbelliferone may improve anti-inflammatory or anticancer therapy. Also, its derivatives are endowed with great potential for therapeutic applications due to their broad spectrum of biological activities such as anti-inflammatory, antioxidant, neuroprotective, antipsychotic, antiepileptic, antidiabetic, antimicrobial, antiviral, and antiproliferative effects. Moreover, 7-hydroxycoumarin ligands have been implemented to develop 7-hydroxycoumarin-based metal complexes with improved pharmacological activity. Besides therapeutic applications, umbelliferone analogues have been designed as fluorescent probes for the detection of biologically important species, such as enzymes, lysosomes, and endosomes, or for monitoring cell processes and protein functions as well various diseases caused by an excess of hydrogen peroxide. Furthermore, 7-hydroxy-based chemosensors may serve as a highly selective tool for Al3+ and Hg2+ detection in biological systems. This review is devoted to a summary of the research on umbelliferone and its synthetic derivatives in terms of biological and pharmaceutical properties, especially those reported in the literature during the period of 2017-2023. Future potential applications of umbelliferone and its synthetic derivatives are presented.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland; (Ł.B.); (M.L.); (J.K.)
| | | | | | | |
Collapse
|
4
|
Supuran CT. Targeting carbonic anhydrases for the management of hypoxic metastatic tumors. Expert Opin Ther Pat 2023; 33:701-720. [PMID: 37545058 DOI: 10.1080/13543776.2023.2245971] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Several isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) are connected with tumorigenesis. Hypoxic tumors overexpress CA IX and XII as a consequence of HIF activation cascade, being involved in pH regulation, metabolism, and metastases formation. Other isoforms (CA I, II, III, IV) were also reported to be present in some tumors. AREAS COVERED Some CA isoforms are biomarkers for disease progression or response to therapy. Inhibitors, antibodies, and other procedures for targeting these enzymes for the treatment of tumors/metastases are discussed. Sulfonamides and coumarins represent the most investigated classes of inhibitors, but carboxylates, selenium, and tellurium-containing inhibitors were also investigated. Hybrid drugs of CA inhibitors with other antitumor agents for multitargeted therapy were reported. EXPERT OPINION Targeting CAs present in solid or hematological tumors with selective, targeted inhibitors is a validated approach, which has been consolidated in the last years. A host of new preclinical data and several clinical trials of antibodies and small-molecule inhibitors are ongoing, which connected with the large number of new chemotypes/procedures discovered to be effective, may lead to a breakthrough in this therapeutic area. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2018 to 2023.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
5
|
Bostancı HE, Çevik UA, Kapavarapu R, Güldiken YC, Inan ZDŞ, Güler ÖÖ, Uysal TK, Uytun A, Çetin FN, Özkay Y, Kaplancıklı ZA. Synthesis, biological evaluation and in silico studies of novel thiadiazole-hydrazone derivatives for carbonic anhydrase inhibitory and anticancer activities. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:543-567. [PMID: 37538028 DOI: 10.1080/1062936x.2023.2240698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Thiadiazole and hydrazone derivatives (5a-5i) were synthesized and their chemical structures were verified and described by 1H NMR, 13C NMR, and HRMS spectra. Three cancer cell lines (MCF-7, MDA, and HT-29) and one healthy cell line (L929) were used to test the cytotoxicity activity of synthesized compounds as well as their inhibitory activity against carbonic anhydrase I, II and IX isoenzymes. Compound 5d (29.74 µM) had a high inhibitory effect on hCA I and compound 5b (23.18 µM) had a high inhibitory effect on hCA II. Furthermore, compound 5i was found to be the most potent against CA IX. Compounds 5a-5i, 5b and 5i showed the highest anticancer effect against MCF-7 cell line with an IC50 value of 9.19 and 23.50 µM, and compound 5d showed the highest anticancer effect against MDA cell line with an IC50 value of 10.43 µM. The presence of fluoro substituent in the o-position of the phenyl ring increases the effect on hCA II, while the methoxy group in the o-position of the phenyl ring increases the activity on hCA I as well as increase the anticancer activity. Cell death induction was evaluated by Annexin V assay and it was determined that these compounds cause cell death by apoptosis. Molecular docking was performed for compounds 5b and 5d to understand their biological interactions. The physical and ADME properties of compounds 5b and 5d were evaluated using SwissADME.
Collapse
Affiliation(s)
- H E Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - U A Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - R Kapavarapu
- Department of Pharmaceutical Chemistry and Phytochemistry, Nirmala College of Pharmacy, Atmakur, India
| | - Y C Güldiken
- Department of Neurology, Kocaeli University Research and Application Hospital, İzmit, Turkey
| | - Z D Ş Inan
- Department of Histology and Embryology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ö Ö Güler
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - T K Uysal
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - A Uytun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - F N Çetin
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Y Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Z A Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
6
|
Liu Q, Zhao M, Song C, Sun J, Tao J, Sun B, Jiang J. Click Triazole as a Linker for Pretargeting Strategies: Synthesis, Docking Investigations, Fluorescence Diagnosis, and Antibacterial Action Studies. Molecules 2023; 28:molecules28062758. [PMID: 36985730 PMCID: PMC10057994 DOI: 10.3390/molecules28062758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, three compounds A1, A2, and A3 and fluorescent probes T1, T2, T3, and T4 were designed and synthesized. 1H NMR, 13C NMR, and MS characterization and elemental analysis were used to confirm A1-A3 and T1-T4. A1-A3 and T1-T4 formed diagnostic molecules by "click" reactions. A1-A3 and T1-T4 did not significantly increase cell death at concentrations of 80 μmol/L. Preliminary screening of the compounds for antibacterial activity revealed that A2 has better antibacterial activity against Agrobacterium tumefaciens. The synthesized compounds and fluorescent probes can be targeted and combined in the physiological condition to form diagnostic molecules for fluorescence detection of Agrobacterium tumefaciens. The binding sites of A1-A3 were deduced theoretically using the AutoDock Vina software docking tool. Further study of the mechanism of the antibacterial action of these compounds is likely to identify new agents against resistant bacterial strains.
Collapse
Affiliation(s)
- Qian Liu
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Mingxia Zhao
- Department of Mining Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, China
| | - Cairong Song
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiankang Sun
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiali Tao
- Department of Mining Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, China
| | - Bin Sun
- Department of Mining Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, China
| | - Junbing Jiang
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Department of Mining Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, China
| |
Collapse
|
7
|
Chen L, Lv Q, Cai J, Liang J, Liang Z, Lin J, Xiao Y, Chen R, Zhang Z, Hong Y, Ji H. Design, synthesis and anticancer activity studies of 3-(coumarin-3-yl)-acrolein derivatives: Evidenced by integrating network pharmacology and vitro assay. Front Pharmacol 2023; 14:1141121. [PMID: 37033621 PMCID: PMC10076643 DOI: 10.3389/fphar.2023.1141121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Coumarin derivatives have diverse structures and show various significant biological activities. Aiming to develop more potent coumarin derivatives for cancer treatment, a series of coumarin acrolein hybrids were designed and synthesized by using molecular hybridization approach, and investigated for their antiproliferative activity against A549, KB, Hela and MCF-7 cancer cells as well as HUVEC and LO2 human normal cells. The results indicated that most of the synthesized compounds displayed remarkable inhibitory activity towards cancer cells but low cytotoxicity on normal cells. Among all the compounds, 5d and 6e were the most promising compounds against different cancer cell lines, especially for A549 and KB cells. The preliminary action mechanism studies suggested that compound 6e, the representative compound, was capable of dose-dependently suppressing migration, invasion and inducing significant apoptosis. Furthermore, the combined results of network pharmacology and validation experiments revealed that compound 6e induced mitochondria dependent apoptosis via the PI3K/AKT-mediated Bcl-2 signaling pathway. In summary, our study indicated compound 6e could inhibit cell proliferation, migration, invasion and promote cell apoptosis through inhibition of PI3K/AKT signaling pathway in human oral epidermoid carcinoma cells. These findings demonstrated the potential of 3-(coumarin-3-yl)-acrolein derivatives as novel anticancer chemotherapeutic candidates, providing ideas for further development of drugs for clinical use.
Collapse
Affiliation(s)
- Lexian Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qianqian Lv
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Jiajie Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ziyan Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiahui Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ying Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruiyao Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yue Hong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong Ji
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hong Ji,
| |
Collapse
|