1
|
Shi X, Wang M, Jiang Z, Cui R, Li B, Zhang X, Zhang L, Cao D. Uptake kinetics and distribution of flupyrimin by rice (Oryza sativa L.): Effects of subcellular fractionation and soil factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117810. [PMID: 39893886 DOI: 10.1016/j.ecoenv.2025.117810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Flupyrimin is an emerging neonicotinoid insecticide primarily used to control rice planthoppers. However, knowledge gaps exist regarding its uptake and transport in rice planting systems. Elucidating the absorption and distribution properties of flupyrimin in rice will help assess the potential risks of human exposure to flupyrimin via the food chain. Here, we studied the uptake kinetics and transport mechanisms of flupyrimin in rice plants grown under hydroponic and soil conditions. The hydroponic experiment indicated that flupyrimin was easily taken up by rice roots via a symplastic passive diffusion process and was mainly distributed in the cell soluble fractions (50.6 %-88.0 %). Compared with transportation from the roots to the stems, flupyrimin was ultimately transported from the stems to the leaves with a greater translocation factor (TF) (TFLeave/Stem = 27.8 > TFStem/Root = 3.1). In rice-soil systems, the accumulation of flupyrimin by rice plants is influenced primarily by the soil organic matter content, which leads to increased adsorption of flupyrimin onto soils (R2 > 0.897, P < 0.014). Interestingly, the concentration of flupyrimin in rice was significantly positively correlated with its amount in the soil pore water (CIPW) (R2 > 0.967, P < 0.003), indicating that the uptake and accumulation of flupyrimin in rice planting systems can be estimated by CIPW. These findings enhance our knowledge of flupyrimin absorption and distribution in rice plants from treated soils and are important for guiding its field application and conducting environmental risk assessments.
Collapse
Affiliation(s)
- Xugen Shi
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Xiajiang Dry Direct-seeded Rice Science and Technology Backyard, Ji'an 331400, China; Jiangxi Guangchang White Lotus Science and Technology Backyard, Fuzhou 344900, China
| | - Min Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhenyu Jiang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ruqiang Cui
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Xiajiang Dry Direct-seeded Rice Science and Technology Backyard, Ji'an 331400, China; Jiangxi Guangchang White Lotus Science and Technology Backyard, Fuzhou 344900, China
| | - Baotong Li
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xianpeng Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Xiajiang Dry Direct-seeded Rice Science and Technology Backyard, Ji'an 331400, China
| | - Lianhu Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Xiajiang Dry Direct-seeded Rice Science and Technology Backyard, Ji'an 331400, China
| | - Duantao Cao
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Xiajiang Dry Direct-seeded Rice Science and Technology Backyard, Ji'an 331400, China.
| |
Collapse
|
2
|
Wu L, Li Y, Ding W, He H, Gao H, Gao Q, Li Y, Qiu L. Functional roles of nicotinic acetylcholine receptors in dinotefuran and flupyrimin toxicity and their sublethal effects on Sogatella furcifera (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2618-2627. [PMID: 39302975 DOI: 10.1093/jee/toae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), a serious rice pest, has developed significant resistance to a wide range of pesticides. Neonicotinoid insecticides are currently the primary choice for controlling S. furcifera, yet their impact on the species remains poorly understood. In this study, we investigated the binding sites of a conventional insecticide (dinotefuran) and a novel insecticide (flupyrimin), and evaluated their sublethal effects on S. furcifera. Our results revealed that the LC50 of dinotefuran and flupyrimin were 2.51 mg/L and 2.80 mg/L in third-instar S. furcifera, respectively. RNA interference (RNAi) knockdown of S. furcifera nicotinic acetylcholine receptor (nAChR) alpha2 subunit (Sfα2) and S. furcifera nAChR beta1 subunit (Sfβ1) significantly reduced the susceptibility to dinotefuran by 18.7% and 16.8%, respectively, but had no effect on flupyrimin. Reproduction of the F0 and F1 generations was significantly inhibited by the LC25 of both dinotefuran and flupyrimin. In the dinotefuran treatment at LC25, the intrinsic growth rate (r) and finite growth rate (λ) were reduced to 0.15 and 0.16 days, respectively; the mean generation time (T) increased to 27.77 days, and the relative fitness was only 0.76 compared to the control. Additionally, the relative fitness (Rf) of the flupyrimin-treated group was reduced to 0.93 and 0.86 times that of the control group. The population dynamics of S. furcifera are significantly affected by both dinotefuran and flupyrimin, making these insecticides valuable tools for integrated pest management and the rational use of insecticides.
Collapse
Affiliation(s)
- Ling Wu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yongqi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Hunan Agricultural University, Changsha, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hongshuai Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
3
|
Zhang L, Huang Y, Duan X, Si H, Luo H, Chen S, Liu L, He H, Wang Z, Liao S. Antifungal Activity and Mechanism of Camphor Derivatives against Rhizoctonia solani: A Promising Alternative Antifungal Agent for Rice Sheath Blight. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11415-11428. [PMID: 38727515 DOI: 10.1021/acs.jafc.4c02865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Rice sheath blight, caused by the fungus Rhizoctonia solani, poses a significant threat to rice cultivation globally. This study aimed to investigate the potential mechanisms of action of camphor derivatives against R. solani. Compound 4o exhibited superior fungicidal activities in vitro (EC50 = 6.16 mg/L), and in vivo curative effects (77.5%) at 500 mg/L were significantly (P < 0.01) higher than the positive control validamycin·bacillus (66.1%). Additionally, compound 4o exhibited low cytotoxicity and acute oral toxicity for adult worker honeybees of Apis mellifera L. Mechanistically, compound 4o disrupted mycelial morphology and microstructure, increased cell membrane permeability, and inhibited both PDH and SDH enzyme activities. Molecular docking and molecular dynamics analyses indicated a tight interaction of compound 4o with PDH and SDH active sites. In summary, compound 4o exhibited substantial antifungal efficacy against R. solani, serving as a promising lead compound for further optimization of antifungal agents.
Collapse
Affiliation(s)
- Li Zhang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yizhong Huang
- College of Life Sciences, Nanchang Normal University, Nanchang 330032, China
| | | | - Hongyan Si
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hai Luo
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shangxing Chen
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | | | - Haohua He
- College of Agronomy, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zongde Wang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shengliang Liao
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
4
|
Liu X, Wang S, Tang H, Li M, Gao P, Peng X, Chen M. Uridine Diphosphate-Glycosyltransferase RpUGT344D38 Contributes to λ-Cyhalothrin Resistance in Rhopalosiphum padi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5165-5175. [PMID: 38437009 DOI: 10.1021/acs.jafc.3c08403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Uridine diphosphate-glycosyltransferase (UGT) is a key phase II enzyme in the insect detoxification system. Pyrethroids are commonly used to control the destructive wheat aphid Rhopalosiphum padi. In this study, we found a highly expressed UGT gene, RpUGT344D38, in both λ-cyhalothrin (LCR)- and bifenthrin (BTR)-resistant strains of R. padi. After exposure to λ-cyhalothrin and bifenthrin, the expression levels of RpUGT344D38 were significantly increased in the resistant strains. Knockdown of RpUGT344D38 did not affect the resistance of BTR, but it did significantly increase the susceptibility of LCR aphids to λ-cyhalothrin. Molecular docking analysis demonstrated that RpUGT344D38 had a stable binding interaction with both bifenthrin and λ-cyhalothrin. The recombinant RpUGT344D38 was able to metabolize 50% of λ-cyhalothrin. This study provides a comprehensive analysis of the role of RpUGT344D38 in the resistance of R. padi to bifenthrin and λ-cyhalothrin, contributing to a better understanding of aphid resistance to pyrethroids.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ping Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Abbass EM, Ali AK, El-Farargy AF, Abdel-Haleem DR, Shaban SS. Synthesis, toxicological and in silico evaluation of novel spiro pyrimidines against Culex pipiens L. referring to chitinase enzyme. Sci Rep 2024; 14:1516. [PMID: 38233515 PMCID: PMC10794250 DOI: 10.1038/s41598-024-51771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
The exponential development of resistance to conventional chemical insecticides adds another important motive for the creation of novel insecticidal active agents. One of the keys to meeting this challenge is the exploration of novel classes of insecticidal molecules with different modes of action. Herein, a novel series of spiro pyrimidine derivatives was prepared using some green synthetic methodologies such as microwave irradiation, and sonication under ultrasound waves. Spiro pyrimidine aminonitrile 1 is a key starting material for the synthesis of targets 2-9 by reaction with different carbon electrophiles and nitrogen nucleophiles. The structures of all the newly synthesized compounds were approved using spectral data. The toxicological efficiency and biological impacts of the synthesized spiro pyrimidine derivatives were assessed against Culex pipiens L. larvae. The toxicity of synthesized compounds showed remarkable variations against the C. pipiens larvae. Where, 3, 4 and 2 were the most efficient compounds with LC50 values of 12.43, 16.29 and 21.73 µg/mL, respectively. While 1 was the least potent compound with an LC50 value of 95.18 µg/mL. As well, other compounds were arranged according to LC50 values as follows 5 > 7 > 6 > 9 > 8. In addition, 3 and 4 exhibited significant prolongation of the developmental duration and greatly inhibited adult emergence. Moreover, many morphological deformities were observed in all developmental stages. Furthermore, cytotoxicity of the most effective compounds was assessed against the normal human cells (WI-38) as non-target organisms, where compounds 2, 4 and 3 showed weak to non-toxic effects. The study of binding affinity and correlation between chemical structure and reactivity was carried out using molecular docking study and DFT calculations to investigate their mode of action. This study shed light on promising compounds with larvicidal activity and biological impacts on the C. pipiens life cycle.
Collapse
Affiliation(s)
- Eslam M Abbass
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Ali Khalil Ali
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Ahmed F El-Farargy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Doaa R Abdel-Haleem
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Safaa S Shaban
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
6
|
Zhu K, Lu X, Li X, Han Q, Zou R, Yang Z, Li H, Duan H. Design and structure optimization of novel butenolide derivatives as low bee-toxicity candidates. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|