1
|
Ketkov SY, Tzeng SY, Rychagova EA, Lukoyanov AN, Tzeng WB. Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy. Phys Chem Chem Phys 2024; 26:1046-1056. [PMID: 38095021 DOI: 10.1039/d3cp05120j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Metallocenes represent archetypical organometallic compounds playing key roles in various fields of fundamental and applied chemistry. Many of their unique properties arise from low ionization energies (IE) which can be tuned by introducing substituents into the rings. Here we report the first mass-analyzed threshold ionization (MATI) spectrum of a methylmetallocene, (Cp')(Cp)Co (Cp' = η5-C5H4Me, Cp = η5-C5H5). The presence of a single Me group allows us to study the "pure" effect of methylation without the mutual influence of substituents. The MATI technique provides an extremely high accuracy in determining the adiabatic IE of (Cp')(Cp)Co which equals 5.2097(6) eV. The effect of a Me group on the IE of cobaltocene appears to be 36% stronger than that in bis(η6-benzene)chromium. The MATI spectrum of (Cp')(Cp)Co shows a rich vibronic structure from which vibrational frequencies of the free ion are determined. This information provides a solid basis for testing the quality of quantum chemical calculations. Various levels of the DFT and coupled cluster computations are used to describe the structural and electronic transformations accompanying the detachment of an elctron from (Cp')(Cp)Co. New aspects of the methyl substituent influence on the potential energy surfaces, as well as on the inhomogeneous changes in charge density and electrostatic potential caused by ionization, are discussed.
Collapse
Affiliation(s)
- Sergey Yu Ketkov
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, 49 Tropinin St., 603950 Nizhny Novgorod, Russian Federation.
| | - Sheng-Yuan Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Elena A Rychagova
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, 49 Tropinin St., 603950 Nizhny Novgorod, Russian Federation.
| | - Anton N Lukoyanov
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, 49 Tropinin St., 603950 Nizhny Novgorod, Russian Federation.
| | - Wen-Bih Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
2
|
Li S, Zhao Y, Jiao Y, Zhao J, Li C, Jia S. Vibronic and Cationic Features of 2-Fluorobenzonitrile and 3-Fluorobenzonitrile Studied by REMPI and MATI Spectroscopy and Franck-Condon Simulations. Molecules 2023; 28:4702. [PMID: 37375257 DOI: 10.3390/molecules28124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Fluorinated organic compounds have superior physicochemical properties than general organic compounds due to the strong C-F single bond; they are widely used in medicine, biology, pesticides, and materials science. In order to gain a deeper understanding of the physicochemical properties of fluorinated organic compounds, fluorinated aromatic compounds have been investigated by various spectroscopic techniques. 2-fluorobenzonitrile and 3-fluorobenzonitrile are important fine chemical intermediates and their excited state S1 and cationic ground state D0 vibrational features remain unknown. In this paper, we used two-color resonance two photon ionization (2-color REMPI) and mass analyzed threshold ionization (MATI) spectroscopy to study S1 and D0 state vibrational features of 2-fluorobenzonitrile and 3-fluorobenzonitrile. The precise excitation energy (band origin) and adiabatic ionization energy were determined to be 36,028 ± 2 cm-1 and 78,650 ± 5 cm-1 for 2-fluorobenzonitrile and 35,989 ± 2 cm-1 and 78,873 ± 5 cm-1 for 3-fluorobenzonitrile, respectively. The density functional theory (DFT) at the levels of RB3LYP/aug-cc-pvtz, TD-B3LYP/aug-cc-pvtz, and UB3LYP/aug-cc-pvtz were used to calculate the stable structures and vibrational frequencies for the ground state S0, excited state S1, and cationic ground state D0, respectively. Franck-Condon spectral simulations for transitions of S1 ← S0 and D0 ← S1 were performed based on the above DFT calculations. The theoretical and experimental results were in good agreement. The observed vibrational features in S1 and D0 states were assigned according to the simulated spectra and the comparison with structurally similar molecules. Several experimental findings and molecular features were discussed in detail.
Collapse
Affiliation(s)
- Shuxian Li
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| | - Yan Zhao
- Department of Physics and Electronics Engineering, Jinzhong University, Jinzhong 030619, China
| | - Yuechun Jiao
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jianming Zhao
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Changyong Li
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|