1
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Panigrahy UP, Urs D, Fatima AF, Nallasivan PK, Chhabra GS, Sayeed M, Alshehri MA, Rab SO, Khan SL, Emran TB. Polyphenols in wound healing: unlocking prospects with clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2459-2485. [PMID: 39453503 DOI: 10.1007/s00210-024-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Wound healing is a multifaceted, complex process that factors like aging, metabolic diseases, and infections may influence. The potentiality of polyphenols, natural compounds, has shown anti-inflammatory and antimicrobial properties in promoting wound healing and their potential applications in wound management. The studies reviewed indicate that polyphenols have multiple mechanisms that promote wound healing. This involves enhancing antioxidant defenses, reducing oxidative stress, modulating inflammatory responses, improving healing times, reducing infection rates, and enhancing tissue regeneration in clinical trials and in vivo and in vitro studies. Polyphenols have been proven to be effective in managing hard-to-heal wounds, especially in diabetic and elderly populations. Polyphenols have shown significant benefits in promoting angiogenesis and stimulating collagen synthesis. Polyphenol treatment has been demonstrated to have therapeutic effects in wound healing and chronic wound management. Their ability to regulate key healing processes makes them suitable for new wound care products and treatments. Future research should enhance formulations and delivery methods to optimize polyphenols' bioavailability and therapeutic efficacy in wound management approaches.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka, 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, 781026, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Campus, Kodagu, Karnataka, India
| | - Ayesha Farhath Fatima
- Department of Pharmaceutics, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - P Kumar Nallasivan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari, Coimbatore, Tamilnadu, India
| | - Gurmeet Singh Chhabra
- Department Pharmaceutical Chemistry, Indore Institute of Pharmacy, Opposite Indian Institute of Management Rau, Pithampur Road, Indore, Madhya Pradesh, India
| | - Mohammed Sayeed
- Department of Pharmacology, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
2
|
Anish RJ, Mohanan B, Nair A, Radhakrishnan KV, Rauf AA. Protective effect of Pterospermum rubiginosum bark extract on bone mineral density and bone remodelling in estrogen deficient ovariectomized Sprague-Dawley (SD) rats. 3 Biotech 2024; 14:101. [PMID: 38464615 PMCID: PMC10917708 DOI: 10.1007/s13205-024-03942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/28/2024] [Indexed: 03/12/2024] Open
Abstract
Osteoporosis is a common metabolic old age disorder characterised by low bone mass content (BMC) and mineral density (BMD) with micro-architectural deterioration of the extracellular matrix, further increasing bone fragility risk. Several traditional remedies, including plant extracts and herbal formulations, are used worldwide by local healers to improve the overall bone health and metabolism as an excellent osteoregenerative agent. Pteropsermum rubiginosum is an underexplored medicinal plant used by tribal peoples of Western Ghats, India, to treat bone fractures and associated inflammation. The proposed study evaluates the elemental profiling and phytochemical characterisation of P. rubiginosum methanolic bark extract (PRME), along with detailed In vitro and In vivo biological investigation in MG-63 cells and Sprague-Dawley (SD) rats. AAS and ICP-MS analysis showed the presence of calcium, phosphorus, and magnesium and exceptional levels of strontium, chromium, and zinc in PRME. The NMR characterisation revealed the presence of vanillic acid, Ergost-4-ene-3-one and catechin. The molecular docking studies revealed the target pockets of isolated compounds and various marker proteins in the bone remodelling cycle. In vitro studies showed a significant hike in ALP and calcium content, along with upregulated mRNA expression of the ALP and COL1, which confirmed the osteoinductive activity of PRME in human osteoblast-like MG-63 cells. The in vivo evaluation in ovariectomised (OVX) rats showed remarkable recovery in ALP, collagen and osteocalcin protein after 3 months of PRME treatment. DEXA scanning reports in OVX rats supported the above in vitro and in vivo results, significantly enhancing the BMD and BMC. The results suggest that PRME can induce osteogenic activity and enhance bone formation with an excellent osteoprotective effect against bone loss in OVX animals due to estrogen deficiency. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03942-7.
Collapse
Affiliation(s)
- Rajamohanan Jalaja Anish
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 India
| | - Biji Mohanan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Aswathy Nair
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 India
- Kerala State Palmyrah Products Development and Workers’ Welfare Corporation Limited, Trivandrum, 695122 India
| | - K. V. Radhakrishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Arun A. Rauf
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 India
| |
Collapse
|
3
|
Carton F. The contribution of immunohistochemistry to the development of hydrogels for skin repair and regeneration. Eur J Histochem 2023; 67. [PMID: 36843501 DOI: 10.4081/ejh.2023.3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Hydrogels based on various polymeric materials have been successfully developed in recent years for a variety of skin applications. Several studies have shown that hydrogels with regenerative, antibacterial, and antiinflammatory properties can provide faster and better healing outcomes, particularly in chronic diseases where the normal physiological healing process is significantly hampered. Various experimental tests are typically performed to assess these materials' ability to promote angiogenesis, re-epithelialization, and the production and maturation of new extracellular matrix. Immunohistochemistry is important in this context because it allows for the visualization of in situ target tissue factors involved in the various stages of wound healing using antibodies labelled with specific markers detectable with different microscopy techniques. This review provides an overview of the various immunohistochemical techniques that have been used in recent years to investigate the efficacy of various types of hydrogels in assisting skin healing processes. The large number of scientific articles published demonstrates immunohistochemistry's significant contribution to the development of engineered biomaterials suitable for treating skin injuries.
Collapse
Affiliation(s)
- Flavia Carton
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara.
| |
Collapse
|