1
|
Halder B, Middya P, Gomila RM, Frontera A, Chattopadhyay S. Synthesis, Structural Characterization, and Theoretical Analysis of Nonconventional Bonding in Dinuclear Zinc(II) Complexes with Tridentate Schiff Bases. ACS OMEGA 2024; 9:41787-41796. [PMID: 39398134 PMCID: PMC11465551 DOI: 10.1021/acsomega.4c06136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Two tridentate N,N,O-donor ligands, HL1 = 4-chloro-2-(((2-(methylamino)ethyl)amino)methyl)phenol and HL2 = 4-chloro-2-(((2-(dimethylamino)ethyl)amino)methyl)phenol, have been used to synthesize phenolate-bridged dinuclear complexes [Zn2(L1)2Cl2] (1) and [Zn2(L2)2(N3)2] (2). Single-crystal X-ray diffraction analysis confirmed their structures. Both complexes form assemblies in the solid state. Moreover, the existence of nonconventional spodium bonds in 1 and tetrel bonds in 2 has been explored using theoretical calculations, including MEP surface plots and QTAIM and NCIplot analyses.
Collapse
Affiliation(s)
- Biplab Halder
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Puspendu Middya
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Rosa M. Gomila
- Department
of Chemistry, Universitat de les Ilels Balears, Crta de Valldemossa km 7.5, Palma de Mallorca (Baleares) 07122, Spain
| | - Antonio Frontera
- Department
of Chemistry, Universitat de les Ilels Balears, Crta de Valldemossa km 7.5, Palma de Mallorca (Baleares) 07122, Spain
| | | |
Collapse
|
2
|
Varadwaj PR. Halogen Bond via an Electrophilic π-Hole on Halogen in Molecules: Does It Exist? Int J Mol Sci 2024; 25:4587. [PMID: 38731806 PMCID: PMC11083155 DOI: 10.3390/ijms25094587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which can be tempered to display the aptness to form a π-hole halogen bond with a series of electron density-rich sites (Lewis bases) hosted individually by 32 other partner molecules. The [MP2/aug-cc-pVTZ] level characteristics of the π-hole halogen bonds in 33 binary complexes obtained from the charge density approaches (quantum theory of intramolecular atoms, molecular electrostatic surface potential, independent gradient model (IGM-δginter)), intermolecular geometries and energies, and second-order hyperconjugative charge transfer analyses are discussed, which are similar to other non-covalent interactions. That a π-hole can be observed on halogen in halogenated molecules is substantiated by experimentally reported crystals documented in the Cambridge Crystal Structure Database. The importance of the π-hole halogen bond in the design and growth of chemical systems in synthetic chemistry, crystallography, and crystal engineering is yet to be fully explicated.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
3
|
Wang X, Li Q, Scheiner S. Search for Osme Bonds with π Systems as Electron Donors. Molecules 2023; 29:79. [PMID: 38202661 PMCID: PMC10779769 DOI: 10.3390/molecules29010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
The Osme bond is defined as pairing a Group 8 metal atom as an electron acceptor in a noncovalent interaction with a nucleophile. DFT calculations with the ωB97XD functional consider MO4 (M = Ru, Os) as the Lewis acid, paired with a series of π electron donors C2H2, C2H4, C6H6, C4H5N, C4H4O, and C4H4S. The calculations establish interaction energies in the range between 9.5 and 26.4 kJ/mol. Os engages in stronger interactions than does Ru, and those involving more extensive π-systems within the aromatic rings form stronger bonds than do the smaller ethylene and acetylene. Extensive analysis questions the existence of a true Osme bond, as the bonding chiefly involves interactions with the three O atoms of MO4 that lie closest to the π-system, via π(C-C)→σ*(M-O) transfers. These interactions are supplemented by back donation from M-O bonds to the π*(CC) antibonding orbitals of the π-systems. Dispersion makes a large contribution to these interactions, higher than electrostatics and much greater than induction.
Collapse
Affiliation(s)
- Xin Wang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| |
Collapse
|
4
|
Keshtkar N, Loveday O, Polo V, Echeverría J. Stabilizing σ-hole Dimethyl Interactions. CRYSTAL GROWTH & DESIGN 2023; 23:5112-5116. [PMID: 37426544 PMCID: PMC10327473 DOI: 10.1021/acs.cgd.3c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Methyl groups bound to electronegative atoms, such as N or O, are recognized to participate in tetrel bonding as Lewis acids. On the other hand, the capability of methyl groups bound to electropositive atoms, such as B or Al, to act as Lewis bases has been recently reported. Herein, we analyze the combination of these two behaviors to establish attractive methyl···methyl interactions. We have explored the Cambridge Structural Database to find experimental examples of these dimethyl-bound systems, finding a significant degree of directionality in the relative disposition of the two methyl groups. Moreover, we have carried out a comprehensive computational analysis at the DFT level of the dimethyl interactions, including the natural bond orbital, energy decomposition analysis, and topological analysis of the electron density (QTAIM and NCI). The dimethyl interaction is characterized as weak yet attractive and based on electrostatics, with a non-negligible contribution from orbital charge transfer and polarization.
Collapse
Affiliation(s)
- Noushin Keshtkar
- Departamento
de Química Física, Pedro Cerbuna
12, 50009 Zaragoza, Spain
| | - Oliver Loveday
- Departament
de Química Inorgànica i Orgànica and IQTC-UB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Víctor Polo
- Departamento
de Química Física, Pedro Cerbuna
12, 50009 Zaragoza, Spain
- Instituto
de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jorge Echeverría
- Departamento
de Química Inorgánica and Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
5
|
Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. Methylammonium Tetrel Halide Perovskite Ion Pairs and Their Dimers: The Interplay between the Hydrogen-, Pnictogen- and Tetrel-Bonding Interactions. Int J Mol Sci 2023; 24:10554. [PMID: 37445738 DOI: 10.3390/ijms241310554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The structural stability of the extensively studied organic-inorganic hybrid methylammonium tetrel halide perovskite semiconductors, MATtX3 (MA = CH3NH3+; Tt = Ge, Sn, Pb; X = Cl, Br, I), arises as a result of non-covalent interactions between an organic cation (CH3NH3+) and an inorganic anion (TtX3-). However, the basic understanding of the underlying chemical bonding interactions in these systems that link the ionic moieties together in complex configurations is still limited. In this study, ion pair models constituting the organic and inorganic ions were regarded as the repeating units of periodic crystal systems and density functional theory simulations were performed to elucidate the nature of the non-covalent interactions between them. It is demonstrated that not only the charge-assisted N-H···X and C-H···X hydrogen bonds but also the C-N···X pnictogen bonds interact to stabilize the ion pairs and to define their geometries in the gas phase. Similar interactions are also responsible for the formation of crystalline MATtX3 in the low-temperature phase, some of which have been delineated in previous studies. In contrast, the Tt···X tetrel bonding interactions, which are hidden as coordinate bonds in the crystals, play a vital role in holding the inorganic anionic moieties (TtX3-) together. We have demonstrated that each Tt in each [CH3NH3+•TtX3-] ion pair has the capacity to donate three tetrel (σ-hole) bonds to the halides of three nearest neighbor TtX3- units, thus causing the emergence of an infinite array of 3D TtX64- octahedra in the crystalline phase. The TtX44- octahedra are corner-shared to form cage-like inorganic frameworks that host the organic cation, leading to the formation of functional tetrel halide perovskite materials that have outstanding optoelectronic properties in the solid state. We harnessed the results using the quantum theory of atoms in molecules, natural bond orbital, molecular electrostatic surface potential and independent gradient models to validate these conclusions.
Collapse
Affiliation(s)
- Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| | - Helder M Marques
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. The Tetrel Bond and Tetrel Halide Perovskite Semiconductors. Int J Mol Sci 2023; 24:6659. [PMID: 37047632 PMCID: PMC10094773 DOI: 10.3390/ijms24076659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
The ion pairs [Cs+•TtX3-] (Tt = Pb, Sn, Ge; X = I, Br, Cl) are the building blocks of all-inorganic cesium tetrel halide perovskites in 3D, CsTtX3, that are widely regarded as blockbuster materials for optoelectronic applications such as in solar cells. The 3D structures consist of an anionic inorganic tetrel halide framework stabilized by the cesium cations (Cs+). We use computational methods to show that the geometrical connectivity between the inorganic monoanions, [TtX3-]∞, that leads to the formation of the TtX64- octahedra and the 3D inorganic perovskite architecture is the result of the joint effect of polarization and coulombic forces driven by alkali and tetrel bonds. Depending on the nature and temperature phase of these perovskite systems, the Tt···X tetrel bonds are either indistinguishable or somehow distinguishable from Tt-X coordinate bonds. The calculation of the potential on the electrostatic surface of the Tt atom in molecular [Cs+•TtX3-] provides physical insight into why the negative anions [TtX3-] attract each other when in close proximity, leading to the formation of the CsTtX3 tetrel halide perovskites in the solid state. The inter-molecular (and inter-ionic) geometries, binding energies, and charge density-based topological properties of sixteen [Cs+•TtX3-] ion pairs, as well as some selected oligomers [Cs+•PbI3-]n (n = 2, 3, 4), are discussed.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| |
Collapse
|