1
|
Khalil RM, Abdelhameed MF, Abou Taleb S, El-Saied MA, Shalaby ES. Preparation and characterisation of esculetin-loaded nanostructured lipid carriers gels for topical treatment of UV-induced psoriasis. Pharm Dev Technol 2024; 29:886-898. [PMID: 39315459 DOI: 10.1080/10837450.2024.2407854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
SIGNIFICANCE As an inflammatory and autoimmune skin condition, psoriasis affects 2-3% of people worldwide. Psoriasis requires prolonged treatments with immunosuppressive medications which have severe adverse effects. Esculetin (Esc) is a natural medication that has been utilised to treat psoriasis. OBJECTIVE The goal of this work is to improve Esc's solubility by developing novel Esc nanostructured lipid carriers (NLCs) for treating psoriasis and increasing the residence time on the skin which infers better skin absorption. METHODS The particle size, zeta potential and entrapment efficiency (EE) of Esc NLCs were assessed. Incorporating NLCs into gum Arabic gel preparation enhances their industrial applicability, absorption and residence time on the skin. Esc NLC gels were evaluated by in vitro release and in vivo effectiveness on a rat model of UV-induced psoriasis. RESULTS Esc NLCs showed high EE reaching more than 95% and reasonable particle size ranging between (53.86 ± 0.38 to 236.3 ± 0.11 nm) and were spherical. The release study of Esc NLCs gel demonstrated a fast release of Esc denoting enhanced bioavailability. Compared to free Esc, Esc NLCs gel (F2) could considerably lower the level of CD34 and TNF-α in the skin. The results were validated through histopathological analysis. CONCLUSION As Esc NLCs gel (F2) has strong anti-inflammatory properties, our results showed that it presented a significant potential for healing psoriasis.
Collapse
Affiliation(s)
- Rawia M Khalil
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Sally Abou Taleb
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Tangdilintin F, Achmad AA, Stephanie, Sulistiawati S, Enggi CK, Wahyudin E, Rahman L, Nainu F, Manggau MA, Permana AD. Development of Transdermal Formulation Integrating Polymer-Based Solid Microneedles and Thermoresponsive Gel Fucoidan for Antiaging: Proof of Concept Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18451-18465. [PMID: 39169662 DOI: 10.1021/acs.langmuir.4c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Skin can be damaged by intense and prolonged exposure to ultraviolet (UV) radiation. Photoaging and acute damage from sun exposure result in collagen degradation and enzymatic activity decline in the skin. Fucoidan (FUC) exhibits potential antiaging properties, including collagen synthesis promotion and enzyme activity inhibition. However, FUC's limited ability to penetrate the skin layers due to its large molecular weight makes it a challenge for topical application. In this study, we successfully developed a new approach by integrating thermoresponsive gel (TRG) containing FUC with solid microneedles (SMNs) as a delivery system. TRG is formulated using a combination of Pluronic F127 (PF127) and Pluronic F68 (PF68) polymers, while SMNs are made from a mixture of poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) polymers with a variety of cross-linkers. Based on the results of ex vivo testing, it was shown that more than 80% of FUC can be delivered using the optimized formula. Furthermore, the results of the in vitro blood hemolytic test showed that TRG-FUC-SMNs were relatively biocompatible. In vivo antiaging activity tests using a rat model exposed to UV for 14 days showed that histological assessment, skin elasticity measurement, wrinkle evaluation, and skin moisture content had no significant differences (p < 0.05) compared to the positive control group. In contrast, a significant difference (p < 0.05) was observed when comparing the TRG-FUC-SMNs group with the group that received only TRG-FUC without pretreatment and negative controls. These findings suggest that FUC has potential to be delivered using the TRG system in combination with SMNs to harness its antiaging properties.
Collapse
Affiliation(s)
| | | | - Stephanie
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Elly Wahyudin
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
3
|
Chu PC, Liao MH, Liu MG, Li CZ, Lai PS. Key Transdermal Patch Using Cannabidiol-Loaded Nanocarriers with Better Pharmacokinetics in vivo. Int J Nanomedicine 2024; 19:4321-4337. [PMID: 38770103 PMCID: PMC11104392 DOI: 10.2147/ijn.s455032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Cannabidiol (CBD) is a promising therapeutic drug with low addictive potential and a favorable safety profile. However, CBD did face certain challenges, including poor solubility in water and low oral bioavailability. To harness the potential of CBD by combining it with a transdermal drug delivery system (TDDS). This innovative approach sought to develop a transdermal patch dosage form with micellar vesicular nanocarriers to enhance the bioavailability of CBD, leading to improved therapeutic outcomes. Methods A skin-penetrating micellar vesicular nanocarriers, prepared using nano emulsion method, cannabidiol loaded transdermal nanocarriers-12 (CTD-12) was presented with a small particle size, high encapsulation efficiency, and a drug-loaded ratio for CBD. The skin permeation ability used Strat-M™ membrane with a transdermal diffusion system to evaluate the CTD and patch of CTD-12 (PCTD-12) within 24 hrs. PCTD-12 was used in a preliminary pharmacokinetic study in rats to demonstrate the potential of the developed transdermal nanocarrier drug patch for future applications. Results In the transdermal application of CTD-12, the relative bioavailability of the formulation was 3.68 ± 0.17-fold greater than in the free CBD application. Moreover, PCTD-12 indicated 2.46 ± 0.18-fold higher relative bioavailability comparing with free CBD patch in the ex vivo evaluation. Most importantly, in the pharmacokinetics of PCTD-12, the relative bioavailability of PCTD-12 was 9.47 ± 0.88-fold higher than in the oral application. Conclusion CTD-12, a transdermal nanocarrier, represents a promising approach for CBD delivery, suggesting its potential as an effective transdermal dosage form.
Collapse
Affiliation(s)
- Po-Cheng Chu
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
- Basic Research and Development Department, Powin Biomedical Co. Ltd., Taichung, Taiwan
| | - Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Mao-Gu Liu
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Cun-Zhao Li
- Basic Research and Development Department, Powin Biomedical Co. Ltd., Taichung, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Negi S, Tandel N, Garg NK, Sharma P, Kumar R, Sharma P, Kumar R, Saini S, Sharma A, Tyagi RK. Co-Delivery of Aceclofenac and Methotrexate Nanoparticles Presents an Effective Treatment for Rheumatoid Arthritis. Int J Nanomedicine 2024; 19:2149-2177. [PMID: 38482519 PMCID: PMC10933537 DOI: 10.2147/ijn.s439359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/01/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common acute inflammatory autoimmune connective tissue arthropathy. The genetic studies, tissue analyses, experimental animal models, and clinical investigations have confirmed that stromal tissue damage and pathology driven by RA mounts the chronic inflammation and dysregulated immune events. METHODS We developed methotrexate (MTX)-loaded lipid-polymer hybrid nanoparticles (MTX-LPHNPs) and aceclofenac (ACE)-loaded nanostructured lipid carriers (ACE-NLCs) for the efficient co-delivery of MTX and ACE via intravenous and transdermal routes, respectively. Bio-assays were performed using ex-vivo skin permeation and transport, macrophage model of inflammation (MMI) (LPS-stimulated THP-1 macrophages), Wistar rats with experimental RA (induction of arthritis with Complete Freund's adjuvant; CFA and BCG), and programmed death of RA affected cells. In addition, gene transcription profiling and serum estimation of inflammatory, signaling, and cell death markers were performed on the blood samples collected from patients with RA. RESULTS Higher permeation of ACE-NLCs/CE across skin layers confirming the greater "therapeutic index" of ACE. The systemic delivery of MTX-loaded LPHNPs via the parenteral (intravenous) route is shown to modulate the RA-induced inflammation and other immune events. The regulated immunological and signaling pathway(s) influence the immunological axis to program the death of inflamed cells in the MMI and the animals with the experimental RA. Our data suggested the CD40-mediated and Akt1 controlled cell death along with the inhibited autophagy in vitro. Moreover, the ex vivo gene transcription profiling in drug-treated PBMCs and serum analysis of immune/signalling markers confirmed the therapeutic role co-delivery of drug nanoparticles to treat RA. The animals with experimental RA receiving drug treatment were shown to regain the structure of paw bones and joints similar to the control and were comparable with the market formulations. CONCLUSION Our findings confirmed the use of co-delivery of drug nanoformulations as the "combination drug regimen" to treat RA.
Collapse
Affiliation(s)
- Sushmita Negi
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (Acsir), Ghaziabad, 201002, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Neeraj K Garg
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Prakriti Sharma
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Rajinder Kumar
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Praveen Sharma
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Reetesh Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sheetal Saini
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Aman Sharma
- Clinical Immunology and Rheumatology Wing, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rajeev K Tyagi
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (Acsir), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Sun R, Xia Q, Sun Y. A Novel Strategy for Topical Administration by Combining Chitosan Hydrogel Beads with Nanostructured Lipid Carriers: Preparation, Characterization, and Evaluation. Gels 2024; 10:160. [PMID: 38534578 DOI: 10.3390/gels10030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
The objective of the present study was to develop and evaluate NLC-chitosan hydrogel beads for topical administration. The feasibility of the preparation technology was verified by investigating various formulation factors and the impact of chitosan hydrogel beads on the NLC. The encapsulation efficiency of NLC-chitosan hydrogel beads was above 95% in optimized process conditions. The physical characterization of the NLC-chitosan hydrogel beads showed that the NLC was distributed within the network of the chitosan hydrogel beads. Furthermore, the incorporation of NLC into the chitosan hydrogel beads was related to the electrostatic interaction between the surface of the NLC and chitosan, which influenced the lipid ordering degree of the NLC and contributed to the stability. The stability studies showed that the retention rate of quercetin in the NLC-chitosan hydrogel beads was 88.63 ± 2.57% after 10 months of storage under natural daylight. An in vitro permeation study showed that NLC-chitosan hydrogel beads exhibited superior ability in enhancing skin permeation by hydrophobic active ingredients compared to the NLC and significantly increased skin accumulation. These studies demonstrated that the use of NLC-chitosan hydrogel beads might be a promising strategy for the delivery of hydrophobic active ingredients in topical administration.
Collapse
Affiliation(s)
- Rui Sun
- Department of Pathology, Medical School of Nantong University, Nantong 226001, China
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yufeng Sun
- Department of Pathology, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
6
|
Galvan A, Pellicciari C, Calderan L. Recreating Human Skin In Vitro: Should the Microbiota Be Taken into Account? Int J Mol Sci 2024; 25:1165. [PMID: 38256238 PMCID: PMC10816982 DOI: 10.3390/ijms25021165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Skin plays crucial roles in the human body: besides protecting the organism from external threats, it acts as a thermal regulator, is responsible for the sense of touch, hosts microbial communities (the skin microbiota) involved in preventing the invasion of foreign pathogens, contains immunocompetent cells that maintain a healthy immunogenic/tolerogenic balance, and is a suitable route for drug administration. In the skin, four defense levels can be identified: besides the physical, chemical, and immune barriers that are inherent to the tissue, the skin microbiota (i.e., the numerous microorganisms living on the skin surface) provides an additional barrier. Studying the skin barrier function or the effects of drugs or cosmetic agents on human skin is a difficult task since snapshot evidence can only be obtained using bioptic samples where dynamic processes cannot properly be followed. To overcome these limitations, many different in vitro models of human skin have been developed that are characterized by diverse levels of complexity in terms of chemical, structural, and cellular composition. The aim of this review is to summarize and discuss the advantages and disadvantages of the different human skin models so far available and to underline how the insertion of a proper microbiota would positively impact an in vitro human skin model in an attempt to better mimic conditions in vivo.
Collapse
Affiliation(s)
- Andrea Galvan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| | - Carlo Pellicciari
- Department of Biology and Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| |
Collapse
|
7
|
Sharma G, Mahajan A, Thakur K, Kaur G, Goni VG, Kumar MV, Barnwal RP, Singh G, Singh B, Katare OP. Exploring the therapeutic potential of sodium deoxycholate tailored deformable-emulsomes of etodolac for effective management of arthritis. Sci Rep 2023; 13:21681. [PMID: 38066008 PMCID: PMC10709335 DOI: 10.1038/s41598-023-46119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The current piece of research intends to evaluate the potential of combining etodolac with deformable-emulsomes, a flexible vesicular system, as a promising strategy for the topical therapy of arthritis. The developed carrier system featured nanometric dimensions (102 nm), an improved zeta potential (- 5.05 mV), sustained drug release (31.33%), and enhanced drug deposition (33.13%) of DE-gel vis-à-vis conventional system (10.34% and 14.71%). The amount of permeation of the developed nano formulation across skin layers was demonstrated through CLSM and dermatokinetics studies. The safety profile of deformable-emulsomes has been investigated through in vitro HaCaT cell culture studies and skin compliance studies. The efficacy of the DE-gel formulation was sevenfold higher in case of Xylene induced ear edema model and 2.2-folds in CFA induced arthritis model than that of group treated with conventional gel (p < 0.01). The main technological rationale lies in the use of phospholipid and sodium deoxycholate-based nanoscale flexible lipoidal vesicles, which effectively encapsulate drug molecules within their interiors. This encapsulation enhances the molecular interactions and facilitates the transportation of the drug molecule effectively to the target-site. Hence, these findings offer robust scientific evidence to support additional investigation into the potential utility of flexible vesicular systems as a promising drug delivery alternative for molecules of this nature.
Collapse
Affiliation(s)
- Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Akanksha Mahajan
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Kanika Thakur
- Research Scientist II, Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Gurjeet Kaur
- Department of Renal Transplant Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Vijay G Goni
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Muniramiah Vinod Kumar
- Department of Orthopaedics, East Point College of Medical Sciences and Research Centre, Bangalore, Karnataka, 560049, India
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|