1
|
Yihan W, Jinjin D, Yingqi W, Guanai M, Xiwu Z. Advances in plant essential oils and drug delivery systems for skincare. Front Pharmacol 2025; 16:1578280. [PMID: 40313613 PMCID: PMC12044306 DOI: 10.3389/fphar.2025.1578280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/03/2025] [Indexed: 05/03/2025] Open
Abstract
Background Essential oils, often referred to as "liquid gold," are renowned for their broad biological activity. Ancient Egyptians used essential oils' antibacterial and antiseptic effects to preserve mummies, ancient Greeks used olive oil for sun protection, and ancient Chinese used essential oils to treat wounds. When essential oils are applied to the facial skin, their potent anti-inflammatory, antioxidant, and antibacterial pharmacological characteristics provide various benefits, including sunscreen, skin-whitening, and anti-aging effects. Purpose This paper aims to summarize the application of plant essential oil in skin whitening, anti-inflammatory, antioxidant and antibacterial in recent years, and deeply analyzes the internal relationship between essential oil and modern drug delivery system, expounds how to overcome the limitations of essential oil through specific drug delivery system, to enhance its biological activity and stability, realize sustained release and reduce its potential toxicity, and also discusses the positive effects of essential oil on brain function through olfactory pathway, emphasizes the possible safety risks in the use of essential oil, and puts forward corresponding suggestions for use. Methods Using keywords such as "essential oils," "antioxidant," "anti-tyrosinase," Antibacterial Effects and anti-inflammatory," "anti-anxiety," and "drug carrier delivery systems," a comprehensive search was conducted in the PubMed, CNKI, Baidu, and Wanfang databases to summarize articles from the past 5 years. Further screening was performed to select studies demonstrating the efficacy of essential oils through topical or external application. Results Various essential oils showed their efficacy as strong oxidants, antibacterial agents, anti-inflammatory agents, and skin-whitening agents. Combined with a new drug delivery system, it not only enhances the biological activity of essential oil but also reduces the inherent defects of essential oil, such as volatility, irritation, and toxicity, and has a targeted delivery effect. At the same time, the integration of essential oil into skin care products can make use of the dual functions of smell and the epidermal system to nourish and repair the skin and maximize the pharmacological effects of essential oil. Conclusion This review delves into the application of essential oils and delivery systems, advocating for a broader integration of natural plant resources with modern technology. By strategically utilizing essential oils, we can promote the sustainable development of the global economy. However, extensive clinical trials are still required to evaluate the effectiveness and safety of essential oil delivery systems.
Collapse
Affiliation(s)
- Wang Yihan
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Dou Jinjin
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
- The Four Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Wang Yingqi
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Mu Guanai
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Zhang Xiwu
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Betlej I, Andres B, Cebulak T, Kapusta I, Balawejder M, Żurek N, Jaworski S, Lange A, Kutwin M, Pisulewska E, Kidacka A, Krochmal-Marczak B, Boruszewski P, Borysiuk P. Phytochemical Composition and Antimicrobial Properties of New Lavandula angustifolia Ecotypes. Molecules 2024; 29:1740. [PMID: 38675563 PMCID: PMC11052340 DOI: 10.3390/molecules29081740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of this study was to characterize ethanol extracts from leaves and flowers of two ecotypes (PL-intended for industrial plantations and KC-intended for cut flowers) of Lavandula angustifolia Mill. The plant was cultivated in 2019 in southern Poland as part of a long-term research plan to develop new varieties resistant to difficult environmental conditions. The collected leaves and flowers were used to prepare ethanol extracts, which were then analyzed in terms of phytochemical composition and antioxidant, bactericidal, and fungicidal properties. Using UPLC techniques, 22 compounds belonging to phenolic acids and flavonoids were identified. UPLC test results indicated that ethanol extracts from leaves and flowers differ in phytochemical composition. Lower amounts of phenolic acids and flavonoids were identified in leaf extracts than in flower extracts. The predominant substances in the flower extracts were rosmarinic acid (829.68-1229.33 µg/g), ferulic acid glucoside III (810.97-980.55 µg/g), and ferulic acid glucoside II (789.30-885.06 µg/g). Ferulic acid glucoside II (3981.95-6561.19 µg/g), ferulic acid glucoside I (2349.46-5503.81 µg/g), and ferulic acid glucoside III (1303.84-2774.17 µg/g) contained the highest amounts in the ethanol extracts of the leaves. The following substances were present in the extracts in trace amounts or at low levels: apigenin, kaempferol, and caftaric acid. Leaf extracts of the PL ecotype quantitatively (µg/g) contained more phytochemicals than leaf extracts of the KC ecotype. The results obtained in this study indicate that antioxidant activity depends on the ecotype. Extracts from the PL ecotype have a better ability to eliminate free radicals than extracts from the KC ecotype. At the same time, it was found that the antioxidant activity (total phenolic content, ABTS•+, DPPH•, and FRAP) of PL ecotype leaf extracts was higher (24.49, 177.75, 164.88, and 89.10 μmol (TE)/g) than that determined in flower extracts (15.84, 125.05, 82.35, and 54.64 μmol (TE)/g). The test results confirmed that leaf and flower extracts, even at low concentrations (0.313-0.63%), significantly inhibit the growth of selected Gram-negative and Gram-positive bacteria and Candida yeasts. Inhibition of mold growth was observed at a dose extract of at least 1 mL/100 mL.
Collapse
Affiliation(s)
- Izabela Betlej
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (B.A.); (P.B.)
| | - Bogusław Andres
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (B.A.); (P.B.)
| | - Tomasz Cebulak
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszów, Poland; (T.C.); (I.K.); (N.Ż.)
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszów, Poland; (T.C.); (I.K.); (N.Ż.)
| | - Maciej Balawejder
- Department of Chemistry and Food Toxicology, University of Rzeszów, 1a Ćwiklińskiej St., 35-601 Rzeszów, Poland;
| | - Natalia Żurek
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszów, Poland; (T.C.); (I.K.); (N.Ż.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Elżbieta Pisulewska
- Department of Plant Production and Food Safety, Carpathian State College in Krosno, 38-400 Krosno, Poland; (E.P.); (B.K.-M.)
| | - Agnieszka Kidacka
- Breeding Department, Małopolska Plant Breeding Company sp. z o. o., 4 Zbożowa St., 30-002 Kraków, Poland;
| | - Barbara Krochmal-Marczak
- Department of Plant Production and Food Safety, Carpathian State College in Krosno, 38-400 Krosno, Poland; (E.P.); (B.K.-M.)
| | - Piotr Boruszewski
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (B.A.); (P.B.)
| | - Piotr Borysiuk
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (B.A.); (P.B.)
| |
Collapse
|
3
|
Barras BJ, Ling T, Rivas F. Recent Advances in Chemistry and Antioxidant/Anticancer Biology of Monoterpene and Meroterpenoid Natural Product. Molecules 2024; 29:279. [PMID: 38202861 PMCID: PMC10780832 DOI: 10.3390/molecules29010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Monoterpenes and meroterpenes are two large classes of isoprene-based molecules produced by terrestrial plants and unicellular organisms as diverse secondary metabolites. The global rising incidence of cancer has led to a renewed interest in natural products. These monoterpenes and meroterpenes represent a novel source of molecular scaffolds that can serve as medicinal chemistry platforms for the development of potential preclinical leads. Furthermore, some of these natural products are either abundant, or their synthetic strategies are scalable as it will be indicated here, facilitating their derivatization to expand their scope in drug discovery. This review is a collection of representative updates (from 2016-2023) in biologically active monoterpene and meroterpenoid natural products and focuses on the recent findings of the pharmacological potential of these bioactive compounds as well as the newly developed synthetic strategies employed to access them. Particular emphasis will be placed on the anticancer and antioxidant potential of these compounds in order to raise knowledge for further investigations into the development of potential anti-cancer therapeutics. The mounting experimental evidence from various research groups across the globe regarding the use of these natural products at pre-clinical levels, renders them a fast-track research area worth of attention.
Collapse
Affiliation(s)
| | - Taotao Ling
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA;
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA;
| |
Collapse
|
4
|
Betlej I, Andres B, Cebulak T, Kapusta I, Balawejder M, Jaworski S, Lange A, Kutwin M, Pisulewska E, Kidacka A, Krochmal-Marczak B, Borysiuk P. Antimicrobial Properties and Assessment of the Content of Bioactive Compounds Lavandula angustifolia Mill. Cultivated in Southern Poland. Molecules 2023; 28:6416. [PMID: 37687245 PMCID: PMC10490438 DOI: 10.3390/molecules28176416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Lavender is a valued plant due to its cosmetic, perfumery, culinary, and health benefits. A wide range of applications is related to the composition of bioactive compounds, the quantity and quality of which is determined by various internal and external factors, i.e., variety, morphological part of the plant, and climatic and soil conditions during vegetation. In the presented work, the characterization of antimicrobial properties as well as the qualitative and quantitative assessment of bioactive compounds in the form of polyphenols in ethanol extracts from leaves and flowers of Lavandula angustifolia Mill. intended for border hedges, cultivated in the region of southern Poland, were determined. The composition of the fraction of volatile substances and antioxidant properties were also assessed. The conducted research shows that extracts from leaves and flowers significantly affected the viability of bacterial cells and the development of mold fungi. A clear decrease in the viability of bacteria and C. albicans cells was shown in the concentration of 0.32% of extracts. Leaf extracts were characterized by a much higher content of polyphenols and antioxidant properties than flower extracts. The composition of volatiles measured by GC-MS was significantly different between the extracts. Linalyl acetate and ocimene isomers mix dominated in flower extracts, whereas coumarin, γ-cadinene, and 7-methoxycoumarin were identified as dominant in leaf extracts.
Collapse
Affiliation(s)
- Izabela Betlej
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Bogusław Andres
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Tomasz Cebulak
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszów, Poland; (T.C.); (I.K.)
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszów, Poland; (T.C.); (I.K.)
| | - Maciej Balawejder
- Department of Chemistry and Food Toxicology, University of Rzeszow, 1a Ćwiklińskiej St., 35-601 Rzeszow, Poland;
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Elżbieta Pisulewska
- Department of Plant Production and Food Safety, Carpathian State College in Krosno, 38-400 Krosno, Poland; (E.P.); (B.K.-M.)
| | - Agnieszka Kidacka
- Breeding Department, Małopolska Plant Breeding Company sp. z o. o., 4 Zbożowa St., 30-002 Kraków, Poland;
| | - Barbara Krochmal-Marczak
- Department of Plant Production and Food Safety, Carpathian State College in Krosno, 38-400 Krosno, Poland; (E.P.); (B.K.-M.)
| | - Piotr Borysiuk
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland;
| |
Collapse
|