1
|
Wei Y, Qu L, Ji X. Synthesis of Natural Products Using Engineered Plants and Microorganisms. Molecules 2024; 29:5054. [PMID: 39519694 PMCID: PMC11547197 DOI: 10.3390/molecules29215054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Microorganisms and plants, particularly medicinal herbs, are abundant sources of diverse natural products, many of which are bioactive molecules with significant pharmaceutical or health benefits, and include artemisinin [...].
Collapse
Affiliation(s)
- Yongjun Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaojun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Xiao C, Du S, Zhou S, Cheng H, Rao S, Wang Y, Cheng S, Lei M, Li L. Identification and functional characterization of ABC transporters for selenium accumulation and tolerance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108676. [PMID: 38714125 DOI: 10.1016/j.plaphy.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.
Collapse
Affiliation(s)
- Chunmei Xiao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sainan Du
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shengli Zhou
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shen Rao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuan Wang
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Lei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Li Li
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
3
|
Wen Y, Cheng L, Zhao Z, An M, Zhou S, Zhao J, Dong S, Yuan X, Yin M. Transcriptome and co-expression network revealed molecular mechanism underlying selenium response of foxtail millet ( Setaria italica). FRONTIERS IN PLANT SCIENCE 2024; 15:1355518. [PMID: 38529063 PMCID: PMC10962390 DOI: 10.3389/fpls.2024.1355518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Introduction Selenium-enriched foxtail millet (Setaria italica) represents a functional cereal with significant health benefits for humans. This study endeavors to examine the impact of foliar application of sodium selenite (Na2SeO4) on foxtail millet, specifically focusing on selenium (Se) accumulation and transportation within various plant tissues. Methods To unravel the molecular mechanisms governing selenium accumulation and transportation in foxtail millet, we conducted a comprehensive analysis of selenium content and transcriptome responses in foxtail millet spikelets across different days (3, 5, 7, and 12) under Na2SeO4 treatment (200 μmol/L). Results Foxtail millet subjected to selenium fertilizer exhibited significantly elevated selenium levels in each tissue compared to the untreated control. Selenate was observed to be transported and accumulated sequentially in the leaf, stem, and spikes. Transcriptome analysis unveiled a substantial upregulation in the transcription levels of genes associated with selenium metabolism and transport, including sulfate, phosphate, and nitrate transporters, ABC transporters, antioxidants, phytohormone signaling, and transcription factors. These genes demonstrated intricate interactions, both synergistic and antagonistic, forming a complex network that regulated selenate transport mechanisms. Gene co-expression network analysis highlighted three transcription factors in the tan module and three transporters in the turquoise module that significantly correlated with selenium accumulation and transportation. Expression of sulfate transporters (SiSULTR1.2b and SiSULTR3.1a), phosphate transporter (PHT1.3), nitrate transporter 1 (NRT1.1B), glutathione S-transferase genes (GSTs), and ABC transporter (ABCC13) increased with SeO4 2- accumulation. Transcription factors MYB, WRKY, and bHLH were also identified as players in selenium accumulation. Conclusion This study provides preliminary insights into the mechanisms of selenium accumulation and transportation in foxtail millet. The findings hold theoretical significance for the cultivation of selenium-enriched foxtail millet.
Collapse
Affiliation(s)
- Yinyuan Wen
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Liuna Cheng
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Jinzhong, China
| | - Zeya Zhao
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Jinzhong, China
| | - Mengyao An
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Shixue Zhou
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Juan Zhao
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Meiqiang Yin
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Jinzhong, China
| |
Collapse
|
4
|
Zheng Q, Guo L, Huang J, Hao X, Li X, Li N, Wang Y, Zhang K, Wang X, Wang L, Zeng J. Comparative transcriptomics provides novel insights into the mechanisms of selenium accumulation and transportation in tea cultivars ( Camellia sinensis (L.) O. Kuntze). FRONTIERS IN PLANT SCIENCE 2023; 14:1268537. [PMID: 37849840 PMCID: PMC10577196 DOI: 10.3389/fpls.2023.1268537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023]
Abstract
Tea plants (Camellia sinensis) show discrepancies in selenium accumulation and transportation, the molecular mechanisms of which are not well understood. Hence, we aimed to conduct a systematic investigation of selenium accumulation and transportation mechanisms in different tea cultivars via transcriptome analysis. The Na2SeO3 and Na2SeO4 treatments improved selenium contents in the roots and leaves of three tea cultivars. The high selenium-enrichment ability (HSe) tea cultivars accumulated higher selenium contents in the leaves than did the low selenium-enrichment ability (LSe) tea cultivars. Transcriptome analysis revealed that differentially expressed genes (DEGs) under the Na2SeO3 and Na2SeO4 treatments were enriched in flavonoid biosynthesis in leaves. DEGs under the Na2SeO3 treatment were enriched in glutathione metabolism in the HSe tea cultivar roots compared to those of the LSe tea cultivar. More transporters and transcription factors involved in improving selenium accumulation and transportation were identified in the HSe tea cultivars under the Na2SeO3 treatment than in the Na2SeO4 treatment. In the HSe tea cultivar roots, the expression of sulfate transporter 1;2 (SULTR1;2) and SULTR3;4 increased in response to Na2SeO4 exposure. In contrast, ATP-binding cassette transporter genes (ABCs), glutathione S-transferase genes (GSTs), phosphate transporter 1;3 (PHT1;3), nitrate transporter 1 (NRT1), and 34 transcription factors were upregulated in the presence of Na2SeO3. In the HSe tea cultivar leaves, ATP-binding cassette subfamily B member 11 (ABCB11) and 14 transcription factors were upregulated under the Na2SeO3 treatment. Among them, WRKY75 was explored as a potential transcription factor that regulated the accumulation of Na2SeO3 in the roots of HSe tea cultivars. This study preliminary clarified the mechanism of selenium accumulation and transportation in tea cultivars, and the findings have important theoretical significance for the breeding and cultivation of selenium-enriched tea cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zeng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Sindireva A, Golubkina N, Bezuglova H, Fedotov M, Alpatov A, Erdenotsogt E, Sękara A, Murariu OC, Caruso G. Effects of High Doses of Selenate, Selenite and Nano-Selenium on Biometrical Characteristics, Yield and Biofortification Levels of Vicia faba L. Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2847. [PMID: 37571001 PMCID: PMC10420794 DOI: 10.3390/plants12152847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Faba bean (Vicia faba L.) has spread worldwide as an excellent source of proteins. To evaluate the efficiency of Se biofortification, four cultivars of V. faba (Belorussian, Russian Black, Hangdown Grünkernig, and Dreifach Weiβe) were foliar treated with 1.27 mM solutions of nano-Se, sodium selenate, and sodium selenite. Yield, protein, and Se contents were greatly affected by genetic factors and chemical form of Se. Selenium biofortification levels were negatively correlated with Se concentration in control plants and increased according to the following sequence: nano-Se < sodium selenite < sodium selenate. Contrary to selenate and selenite, nano-Se showed a growth-stimulating effect, improving yield, seed weight, and pod number. Pod thickness decreased significantly as a result of nano-Se supply and increased by 1.5-2.3 times under selenate and selenite supply. The highest Se concentrations were recorded in the seeds of Se-fortified cv. Belorussian and the lowest one in those of Se-treated Hangdown Grünkernig. Protein accumulation was varietal dependent and decreased upon 1.27 mM selenate and selenite treatment in the cvs. Hangdown Grünkernig and Dreifach Weiβe. The results indicate the high prospects of nano-Se supply for the production of faba bean seeds with high levels of Se.
Collapse
Affiliation(s)
- Anna Sindireva
- Department of Geoecology and Nature Management, Tumen State University, Volodarsky Str. 6, 625003 Tumen, Russia
| | - Nadezhda Golubkina
- Federal Scientific Vegetable Center, Selectsionnaya, 14, VNIISSOK, Odintsovo District, 143072 Moscow, Russia
| | - Helene Bezuglova
- Department of Agronomy, Selection and Seeds Production, Omsk State Agrarian University, Institutskaya Square, 1, 644008 Omsk, Russia;
| | - Mikhail Fedotov
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr., 49, 119334 Moscow, Russia; (M.F.); (A.A.)
| | - Andrey Alpatov
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr., 49, 119334 Moscow, Russia; (M.F.); (A.A.)
| | - Erdene Erdenotsogt
- Mongolian National Center of Public Health, Peace Ave, 46, Ulaanbaatar 211049, Mongolia;
| | - Agnieszka Sękara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland;
| | - Otilia Cristina Murariu
- Department of Food Technology, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 M. Sadoveanu Alley, 700440 Iasi, Romania;
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy;
| |
Collapse
|